
Hana Raslova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1843102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New insights into regulation of αIIbβ3 integrin signaling by filamin A. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12672.	2.3	2
2	An inherited gainâ€ofâ€function risk allele in <scp><i>EPOR</i></scp> predisposes to familial <scp><i>JAK2</i>^{V617F}</scp> myeloproliferative neoplasms. British Journal of Haematology, 2022, 198, 131-136.	2,5	6
3	Role of Rho-GTPases in megakaryopoiesis. Small GTPases, 2021, 12, 399-415.	1.6	5
4	Miniaturized 3D bone marrow tissue model to assess response to Thrombopoietin-receptor agonists in patients. ELife, 2021, 10, .	6.0	10
5	CALR mutant protein rescues the response of MPL p.R464G variant associated with CAMT to eltrombopag. Blood, 2021, 138, 480-485.	1.4	3
6	Dual role of EZH2 in megakaryocyte differentiation. Blood, 2021, 138, 1603-1614.	1.4	5
7	Induced Pluripotent Stem Cells Enable Disease Modeling and Drug Screening in Calreticulin del52 and ins5 Myeloproliferative Neoplasms. HemaSphere, 2021, 5, e593.	2.7	5
8	Inferring the dynamics of mutated hematopoietic stem and progenitor cells induced by IFNÎ \pm in myeloproliferative neoplasms. Blood, 2021, 138, 2231-2243.	1.4	25
9	The megakaryocyte: a cell with 3 faces as a mythic god?. Blood, 2021, 138, 1199-1200.	1.4	1
10	Lyl-1 regulates primitive macrophages and microglia development. Communications Biology, 2021, 4, 1382.	4.4	8
11	Megakaryocyte polyploidization: role in platelet production. Platelets, 2020, 31, 707-716.	2.3	20
12	Calreticulin del52 and ins5 knock-in mice recapitulate different myeloproliferative phenotypes observed in patients with MPN. Nature Communications, 2020, 11, 4886.	12.8	27
13	First description of revertant mosaicism in familial platelet disorder with predisposition to acute myelogenous leukemia: correlation with the clinical phenotype. Haematologica, 2020, 105, e535.	3.5	6
14	Induced pluripotent stem cells and hematological malignancies: A powerful tool for disease modeling and drug development. Stem Cell Research, 2020, 49, 102060.	0.7	4
15	Different impact of calreticulin mutations on human hematopoiesis in myeloproliferative neoplasms. Oncogene, 2020, 39, 5323-5337.	5.9	12
16	TET2 haploinsufficiency alters reprogramming into induced pluripotent stem cells. Stem Cell Research, 2020, 44, 101755.	0.7	5
17	The Pediatric Acute Leukemia Fusion Oncogene ETO2â€GLIS2 Increases Selfâ€Renewal and Alters Differentiation in a Human Induced Pluripotent Stem Cellsâ€Derived Model. HemaSphere, 2020, 4, e319.	2.7	8

1.4 62

#	Article	IF	CITATIONS
19	Germline <i>RUNX1</i> Intragenic Deletion: Implications for Accurate Diagnosis of FPD/AML. HemaSphere, 2019, 3, e203.	2.7	13
20	Disrupted filamin A/αIIbβ3 interaction induces macrothrombocytopenia by increasing RhoA activity. Blood, 2019, 133, 1778-1788.	1.4	27
21	Rare type 1-like and type 2-like calreticulin mutants induce similar myeloproliferative neoplasms as prevalent type 1 and 2 mutants in mice. Oncogene, 2019, 38, 1651-1660.	5.9	7
22	Downregulation of TREM-like transcript-1 and collagen receptor α2 subunit, two novel RUNX1-targets, contributes to platelet dysfunction in familial platelet disorder with predisposition to acute myelogenous leukemia. Haematologica, 2019, 104, 1244-1255.	3.5	16
23	A new heterozygous mutation in <i><scp>GP</scp>1<scp>BA</scp></i> gene responsible for macrothrombocytopenia. British Journal of Haematology, 2018, 183, 503-506.	2.5	8
24	New pathogenic mechanisms induced by germline erythropoietin receptor mutations in primary erythrocytosis. Haematologica, 2018, 103, 575-586.	3.5	17
25	Clinic, pathogenic mechanisms and drug testing of two inherited thrombocytopenias, ANKRD26-related Thrombocytopenia and MYH9-related diseases. European Journal of Medical Genetics, 2018, 61, 715-722.	1.3	27
26	Mutations of the integrin αIIb/β3 intracytoplasmic salt bridge cause macrothrombocytopenia and enlarged platelet αâ€granules. American Journal of Hematology, 2018, 93, 195-204.	4.1	17
27	Megakaryocyte and polyploidization. Experimental Hematology, 2018, 57, 1-13.	0.4	73
28	Acquired TET 2 mutation in one patient with familial platelet disorder with predisposition to AML led to the development of preâ€leukaemic clone resulting in T2―ALL and AML â€MO. Journal of Cellular and Molecular Medicine, 2017, 21, 1237-1242.	3.6	10
29	Germline variants in <i>ETV6</i> underlie reduced platelet formation, platelet dysfunction and increased levels of circulating CD34 ⁺ progenitors. Haematologica, 2017, 102, 282-294.	3.5	70
30	ETO2-GLIS2 Hijacks Transcriptional Complexes to Drive Cellular Identity and Self-Renewal in Pediatric Acute Megakaryoblastic Leukemia. Cancer Cell, 2017, 31, 452-465.	16.8	60
31	Critical role of the HDAC6–cortactin axis in human megakaryocyte maturation leading to a proplatelet-formation defect. Nature Communications, 2017, 8, 1786.	12.8	35
32	CK2: a key regulator of thrombopoiesis. Blood, 2017, 130, 2695-2697.	1.4	2
33	Uncoupling of the Hippo and Rho pathways allows megakaryocytes to escape the tetraploid checkpoint. Haematologica, 2016, 101, 1469-1478.	3.5	18
34	An incomplete trafficking defect to the cell-surface leads to paradoxical thrombocytosis for human and murine MPL P106L. Blood, 2016, 128, 3146-3158.	1.4	16
35	Activity of nonmuscle myosin II isoforms determines localization at the cleavage furrow of megakaryocytes. Blood, 2016, 128, 3137-3145.	1.4	17
36	Eltrombopag, a potent stimulator of megakaryopoiesis. Haematologica, 2016, 101, 1443-1445.	3.5	14

#	Article	IF	CITATIONS
37	Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood, 2016, 127, 333-342.	1.4	149
38	The cell division control protein 42–Src family kinase–neural Wiskott–Aldrich syndrome protein pathway regulates human proplatelet formation. Journal of Thrombosis and Haemostasis, 2016, 14, 2524-2535.	3.8	15
39	Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood, 2016, 127, 1317-1324.	1.4	220
40	Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood, 2016, 127, 1325-1335.	1.4	261
41	The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica, 2016, 101, 115-208.	3.5	67
42	Somatic mutations associated with leukemic progression of familial platelet disorder with predisposition to acute myeloid leukemia. Leukemia, 2016, 30, 999-1002.	7.2	86
43	New Insights into Mechanisms of Erythropoietin Receptor Mutations in Primary Familial and Congenital Polycythemia. Blood, 2016, 128, 631-631.	1.4	2
44	P53 activation inhibits all types of hematopoietic progenitors and all stages of megakaryopoiesis. Oncotarget, 2016, 7, 31980-31992.	1.8	38
45	Calreticulin Mutants Induce an Early Clonal Dominance and a Megakaryocytic Phenotype through the Activation of MPL/JAK2 Pathway in Human Primary Cells. Blood, 2016, 128, 1959-1959.	1.4	1
46	ETO2-GLIS2 Controls Differentiation Arrest and Self-Renewal through Aberrant Enhancers Regulation in Pediatric Leukemia. Blood, 2016, 128, 572-572.	1.4	0
47	Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood, 2015, 125, 930-940.	1.4	87
48	Progress in understanding the diagnosis and molecular genetics of macrothrombocytopenias. British Journal of Haematology, 2015, 170, 626-639.	2.5	32
49	Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nature Genetics, 2015, 47, 1131-1140.	21.4	107
50	p19INK4d Controls Hematopoietic Stem Cells in a Cell-Autonomous Manner during Genotoxic Stress and through the Microenvironment during Aging. Stem Cell Reports, 2014, 3, 1085-1102.	4.8	27
51	Mechanisms underlying platelet function defect in a pedigree with familial platelet disorder with a predisposition to acute myelogenous leukemia: potential role for candidate RUNX1 targets. Journal of Thrombosis and Haemostasis, 2014, 12, 761-772.	3.8	55
52	Human CalDAG-GEFI gene (<i>RASGRP2</i>) mutation affects platelet function and causes severe bleeding. Journal of Experimental Medicine, 2014, 211, 1349-1362.	8.5	117
53	A new form of macrothrombocytopenia induced by a germ-line mutation in the PRKACG gene. Blood, 2014, 124, 2554-2563.	1.4	69
54	Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. Journal of Clinical Investigation, 2014, 124, 580-591.	8.2	163

#	Article	IF	CITATIONS
55	First case of a human <i>RASGRP2</i> mutation affecting Rap1 activation in platelets and causing severe bleeding Journal of Cell Biology, 2014, 206, 2061OIA111.	5.2	0
56	Developmental changes in human megakaryopoiesis. Journal of Thrombosis and Haemostasis, 2013, 11, 1730-1741.	3.8	68
57	Concomitant germâ€line <i><scp>RUNX</scp>1</i> and acquired <i><scp>ASXL</scp>1</i> mutations in a Tâ€cell acute lymphoblastic leukemia. European Journal of Haematology, 2013, 91, 277-279.	2.2	25
58	The abnormal proplatelet formation in MYH9â€related macrothrombocytopenia results from an increased actomyosin contractility and is rescued by myosin IIA inhibition. Journal of Thrombosis and Haemostasis, 2013, 11, 2163-2175.	3.8	33
59	Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death and Disease, 2013, 4, e738-e738.	6.3	30
60	Heterozygous and Homozygous JAK2V617F States Modeled by Induced Pluripotent Stem Cells from Myeloproliferative Neoplasm Patients. PLoS ONE, 2013, 8, e74257.	2.5	32
61	RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization. Nature Communications, 2012, 3, 717.	12.8	122
62	Primary hematopoietic cells from DBA patients with mutations in RPL11 and RPS19 genes exhibit distinct erythroid phenotype in vitro. Cell Death and Disease, 2012, 3, e356-e356.	6.3	68
63	Dysmegakaryopoiesis of FPD/AML pedigrees with constitutional RUNX1 mutations is linked to myosin II deregulated expression. Blood, 2012, 120, 2708-2718.	1.4	93
64	MYH10 protein expression in platelets as a biomarker of RUNX1 and FL11 alterations. Blood, 2012, 120, 2719-2722.	1.4	68
65	Abstract 2022: P53-dependent thrombocytopenia induced by the histone deacetylase inhibitor S78454. , 2012, , .		0
66	Modeling JAK2V617F Heterozygous and Homozygous Mutations by Using Induced Pluripotent Stem Cells Derived From Myeloproliferative Neoplasms Patients. Blood, 2012, 120, 1758-1758.	1.4	0
67	Down-regulation of the RUNX1-target gene NR4A3 contributes to hematopoiesis deregulation in familial platelet disorder/acute myelogenous leukemia. Blood, 2011, 118, 6310-6320.	1.4	53
68	RUNX1-Induced Silencing of Non-Muscle Myosin Iib (MYH10) Is Required for Megakaryocyte Polyploidization. Blood, 2011, 118, 1308-1308.	1.4	0
69	The serum response factor (SRF)/megakaryocytic acute leukemia (MAL) network participates in megakaryocyte development. Leukemia, 2010, 24, 1227-1230.	7.2	30
70	Regulation of megakaryocyte maturation and platelet formation. Journal of Thrombosis and Haemostasis, 2009, 7, 227-234.	3.8	86
71	MAL/SRF complex is involved in platelet formation and megakaryocyte migration by regulating MYL9 (MLC2) and MMP9. Blood, 2009, 114, 4221-4232.	1.4	77
72	P19INK4D links endomitotic arrest and megakaryocyte maturation and is regulated by AML-1. Blood, 2008, 111, 4081-4091.	1.4	47

#	Article	IF	CITATIONS
73	From Hematopoietic Stem Cells to Megakaryocytes and Platelets. , 2008, , 162-177.		1
74	Interrelation between polyploidization and megakaryocyte differentiation: a gene profiling approach. Blood, 2007, 109, 3225-3234.	1.4	108
75	p210BCR-ABL reprograms transformed and normal human megakaryocytic progenitor cells into erythroid cells and suppresses FLI-1 transcription. Leukemia, 2007, 21, 917-925.	7.2	4
76	Mammalian target of rapamycin (mTOR) regulates both proliferation of megakaryocyte progenitors and late stages of megakaryocyte differentiation. Blood, 2006, 107, 2303-2310.	1.4	84
77	Monocyte/Macrophage Dysfunctions Do Not Impair the Promotion of Myelofibrosis by High Levels of Thrombopoietin. Journal of Immunology, 2006, 176, 6425-6433.	0.8	21
78	A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature, 2005, 434, 1144-1148.	27.8	3,221
79	Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene, 2004, 23, 4362-4370.	5.9	280
80	FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. Journal of Clinical Investigation, 2004, 114, 77-84.	8.2	145
81	Murine gammaherpesvirus (MHV) M7 gene encoding glycoprotein 150 (gp150): difference in the sequence between 72 and 68 strains. Virus Genes, 2003, 26, 89-95.	1.6	8
82	Interference of mouse polyomavirus with the c-myc gene and its product in mouse mammary adenocarcinomas. International Journal of Oncology, 2003, 23, 333.	3.3	1
83	Megakaryocyte polyploidization is associated with a functional gene amplification. Blood, 2003, 101, 541-544.	1.4	75
84	Susceptibility of mouse mammary glands to murine gammaherpesvirus 72 (MHV-72) infection: evidence of MHV-72 transmission via breast milk. Microbial Pathogenesis, 2001, 31, 47-58.	2.9	30
85	Immunophenotypic Study of Atypical Lymphocytes Generated in Peripheral Blood and Spleen of Nude Mice After MHV-72 Infection. Viral Immunology, 2000, 13, 313-327.	1.3	19
86	The Bystander Effect Mediated by the New Murine Gammaherpesvirus 72 — Thymidine Kinase/5â€2-Fluoro-2â€2-Deoxyuridine (MHV72-TK/5-FUdR) Systemin Vitro. Antiviral Chemistry and Chemotherapy, 2000, 11, 273-282.	0.6	11