Greet De Baets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1842260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing computational predictions of the phenotypic effect of cystathionineâ€betaâ€synthase variants. Human Mutation, 2019, 40, 1530-1545.	2.5	5
2	Nuclear inclusion bodies of mutant and wildâ€ŧype p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation. Journal of Pathology, 2017, 242, 24-38.	4.5	54
3	Solubis: a webserver to reduce protein aggregation through mutation. Protein Engineering, Design and Selection, 2016, 29, 285-289.	2.1	51
4	Restricted Location of PSEN2/Î ³ -Secretase Determines Substrate Specificity and Generates an Intracellular AÎ ² Pool. Cell, 2016, 166, 193-208.	28.9	260
5	Increased Aggregation Is More Frequently Associated to Human Disease-Associated Mutations Than to Neutral Polymorphisms. PLoS Computational Biology, 2015, 11, e1004374.	3.2	38
6	Sequence-dependent Internalization of Aggregating Peptides. Journal of Biological Chemistry, 2015, 290, 242-258.	3.4	22
7	Solubis: optimize your protein. Bioinformatics, 2015, 31, 2580-2582.	4.1	19
8	Selectivity of Aggregation-Determining Interactions. Journal of Molecular Biology, 2015, 427, 236-247.	4.2	25
9	A Genome-Wide Sequence–Structure Analysis Suggests Aggregation Gatekeepers Constitute an Evolutionary Constrained Functional Class. Journal of Molecular Biology, 2014, 426, 2405-2412.	4.2	35
10	Horizontal gene transfer from human host to HIV-1 reverse transcriptase confers drug resistance and partly compensates for replication deficits. Virology, 2014, 456-457, 310-318.	2.4	5
11	Predicting aggregation-prone sequences in proteins. Essays in Biochemistry, 2014, 56, 41-52.	4.7	41
12	Molecular Plasticity Regulates Oligomerization and Cytotoxicity of the Multipeptide-length Amyloid-Î ² Peptide Pool. Journal of Biological Chemistry, 2012, 287, 36732-36743.	3.4	37
13	A comparative analysis of the aggregation behavior of amyloidâ€Î² peptide variants. FEBS Letters, 2012, 586, 4088-4093.	2.8	64
14	SNPeffect 4.0: on-line prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Research, 2012, 40, D935-D939.	14.5	235
15	α-Galactosidase Aggregation Is a Determinant of Pharmacological Chaperone Efficacy on Fabry Disease Mutants. Journal of Biological Chemistry, 2012, 287, 28386-28397.	3.4	31
16	An Evolutionary Trade-Off between Protein Turnover Rate and Protein Aggregation Favors a Higher Aggregation Propensity in Fast Degrading Proteins. PLoS Computational Biology, 2011, 7, e1002090.	3.2	50