
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1842066/publications.pdf Version: 2024-02-01

HUAN MENC

#	Article	IF	CITATIONS
1	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	14.6	976
2	Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 2006, 163, 109-120.	0.8	825
3	Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs. ACS Nano, 2009, 3, 3273-3286.	14.6	817
4	Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and P-Glycoprotein siRNA to Overcome Drug Resistance in a Cancer Cell Line. ACS Nano, 2010, 4, 4539-4550.	14.6	817
5	Use of Metal Oxide Nanoparticle Band Gap To Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation. ACS Nano, 2012, 6, 4349-4368.	14.6	718
6	Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate. Accounts of Chemical Research, 2013, 46, 622-631.	15.6	627
7	Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society, 2010, 132, 12690-12697.	13.7	550
8	Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects. ACS Nano, 2015, 9, 1788-1800.	14.6	536
9	Codelivery of an Optimal Drug/siRNA Combination Using Mesoporous Silica Nanoparticles To Overcome Drug Resistance in Breast Cancer <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2013, 7, 994-1005.	14.6	525
10	Nanomaterial Toxicity Testing in the 21st Century: Use of a Predictive Toxicological Approach and High-Throughput Screening. Accounts of Chemical Research, 2013, 46, 607-621.	15.6	501
11	Use of Size and a Copolymer Design Feature To Improve the Biodistribution and the Enhanced Permeability and Retention Effect of Doxorubicin-Loaded Mesoporous Silica Nanoparticles in a Murine Xenograft Tumor Model. ACS Nano, 2011, 5, 4131-4144.	14.6	446
12	Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 2012, 134, 15790-15804.	13.7	372
13	Use of a Lipid-Coated Mesoporous Silica Nanoparticle Platform for Synergistic Gemcitabine and Paclitaxel Delivery to Human Pancreatic Cancer in Mice. ACS Nano, 2015, 9, 3540-3557.	14.6	367
14	Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nature Communications, 2017, 8, 1811.	12.8	360
15	Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos. ACS Nano, 2011, 5, 1223-1235.	14.6	341
16	Aspect Ratio Determines the Quantity of Mesoporous Silica Nanoparticle Uptake by a Small GTPase-Dependent Macropinocytosis Mechanism. ACS Nano, 2011, 5, 4434-4447.	14.6	330
17	Designed Synthesis of CeO ₂ Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials. ACS Nano, 2012, 6, 5366-5380.	14.6	323
18	Surface Defects on Plate-Shaped Silver Nanoparticles Contribute to Its Hazard Potential in a Fish Gill Cell Line and Zebrafish Embryos. ACS Nano, 2012, 6, 3745-3759.	14.6	318

#	Article	IF	CITATIONS
19	A Predictive Toxicological Paradigm for the Safety Assessment of Nanomaterials. ACS Nano, 2009, 3, 1620-1627.	14.6	303
20	Dispersion and Stability Optimization of TiO ₂ Nanoparticles in Cell Culture Media. Environmental Science & Technology, 2010, 44, 7309-7314.	10.0	288
21	Multihydroxylated [Gd@C82(OH)22]nNanoparticles:Â Antineoplastic Activity of High Efficiency and Low Toxicity. Nano Letters, 2005, 5, 2050-2057.	9.1	281
22	Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity. ACS Nano, 2013, 7, 2352-2368.	14.6	265
23	Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nano-copper particles. Toxicology Letters, 2007, 175, 102-110.	0.8	243
24	Use of Coated Silver Nanoparticles to Understand the Relationship of Particle Dissolution and Bioavailability to Cell and Lung Toxicological Potential. Small, 2014, 10, 385-398.	10.0	242
25	Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7449-7454.	7.1	233
26	Targeted Intracellular Delivery of Antituberculosis Drugs to Mycobacterium tuberculosis-Infected Macrophages via Functionalized Mesoporous Silica Nanoparticles. Antimicrobial Agents and Chemotherapy, 2012, 56, 2535-2545.	3.2	219
27	Irinotecan Delivery by Lipid-Coated Mesoporous Silica Nanoparticles Shows Improved Efficacy and Safety over Liposomes for Pancreatic Cancer. ACS Nano, 2016, 10, 2702-2715.	14.6	215
28	Surface Interactions with Compartmentalized Cellular Phosphates Explain Rare Earth Oxide Nanoparticle Hazard and Provide Opportunities for Safer Design. ACS Nano, 2014, 8, 1771-1783.	14.6	212
29	Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C ₈₂ (OH) ₂₂ and its implication for de novo design of nanomedicine. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15431-15436.	7.1	200
30	Breast Cancer Chemo-immunotherapy through Liposomal Delivery of an Immunogenic Cell Death Stimulus Plus Interference in the IDO-1 Pathway. ACS Nano, 2018, 12, 11041-11061.	14.6	200
31	New Insights into "Permeability―as in the Enhanced Permeability and Retention Effect of Cancer Nanotherapeutics. ACS Nano, 2017, 11, 9567-9569.	14.6	199
32	Dispersal State of Multiwalled Carbon Nanotubes Elicits Profibrogenic Cellular Responses That Correlate with Fibrogenesis Biomarkers and Fibrosis in the Murine Lung. ACS Nano, 2011, 5, 9772-9787.	14.6	178
33	High Content Screening in Zebrafish Speeds up Hazard Ranking of Transition Metal Oxide Nanoparticles. ACS Nano, 2011, 5, 7284-7295.	14.6	176
34	Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. Journal of Clinical Investigation, 2017, 127, 2007-2018.	8.2	168
35	Two-Wave Nanotherapy To Target the Stroma and Optimize Gemcitabine Delivery To a Human Pancreatic Cancer Model in Mice. ACS Nano, 2013, 7, 10048-10065.	14.6	163
36	Pluronic F108 Coating Decreases the Lung Fibrosis Potential of Multiwall Carbon Nanotubes by Reducing Lysosomal Injury. Nano Letters, 2012, 12, 3050-3061.	9.1	159

#	Article	IF	CITATIONS
37	Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochemical Pharmacology, 2006, 71, 872-881.	4.4	152
38	Quantitative Techniques for Assessing and Controlling the Dispersion and Biological Effects of Multiwalled Carbon Nanotubes in Mammalian Tissue Culture Cells. ACS Nano, 2010, 4, 7241-7252.	14.6	151
39	Potent Angiogenesis Inhibition by the Particulate Form of Fullerene Derivatives. ACS Nano, 2010, 4, 2773-2783.	14.6	148
40	Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer. Nanoscale, 2020, 12, 877-887.	5.6	146
41	Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicology and Applied Pharmacology, 2008, 230, 364-371.	2.8	145
42	Mesoporous silica nanoparticles: A multifunctional nano therapeutic system. Integrative Biology (United Kingdom), 2013, 5, 19-28.	1.3	136
43	PdO Doping Tunes Band-Gap Energy Levels as Well as Oxidative Stress Responses to a Co ₃ O ₄ <i>p</i> . American Chemical Society, 2014, 136, 6406-6420.	13.7	136
44	Walking the line: The fate of nanomaterials at biological barriers. Biomaterials, 2018, 174, 41-53.	11.4	125
45	Age-Related Differences in Pulmonary and Cardiovascular Responses to SiO ₂ Nanoparticle Inhalation: Nanotoxicity Has Susceptible Population. Environmental Science & Technology, 2008, 42, 8985-8992.	10.0	124
46	Zebrafish Highâ€Throughput Screening to Study the Impact of Dissolvable Metal Oxide Nanoparticles on the Hatching Enzyme, ZHE1. Small, 2013, 9, 1776-1785.	10.0	112
47	Use of a Pro-Fibrogenic Mechanism-Based Predictive Toxicological Approach for Tiered Testing and Decision Analysis of Carbonaceous Nanomaterials. ACS Nano, 2015, 9, 3032-3043.	14.6	107
48	The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology, 2008, 19, 145102.	2.6	103
49	Transcytosis - An effective targeting strategy that is complementary to "EPR effect―for pancreatic cancer nano drug delivery. Theranostics, 2019, 9, 8018-8025.	10.0	103
50	Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 136-146.	3.3	101
51	Aspect Ratio Plays a Role in the Hazard Potential of CeO ₂ Nanoparticles in Mouse Lung and Zebrafish Gastrointestinal Tract. ACS Nano, 2014, 8, 4450-4464.	14.6	98
52	Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Science Bulletin, 2015, 60, 3-20.	9.0	96
53	Liposomal Delivery of Mitoxantrone and a Cholesteryl Indoximod Prodrug Provides Effective Chemo-immunotherapy in Multiple Solid Tumors. ACS Nano, 2020, 14, 13343-13366.	14.6	91
54	Improved Efficacy and Reduced Toxicity Using a Custom-Designed Irinotecan-Delivering Silicasome for Orthotopic Colon Cancer. ACS Nano, 2019, 13, 38-53.	14.6	87

#	Article	IF	CITATIONS
55	Differential Expression of Syndecan-1 Mediates Cationic Nanoparticle Toxicity in Undifferentiated versus Differentiated Normal Human Bronchial Epithelial Cells. ACS Nano, 2011, 5, 2756-2769.	14.6	86
56	Use of Polymeric Nanoparticle Platform Targeting the Liver To Induce Treg-Mediated Antigen-Specific Immune Tolerance in a Pulmonary Allergen Sensitization Model. ACS Nano, 2019, 13, 4778-4794.	14.6	78
57	Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Advanced Drug Delivery Reviews, 2018, 130, 50-57.	13.7	72
58	Combination Chemoâ€Immunotherapy for Pancreatic Cancer Using the Immunogenic Effects of an Irinotecan Silicasome Nanocarrier Plus Antiâ€PDâ€1. Advanced Science, 2021, 8, 2002147.	11.2	59
59	Repetitive Dosing of Fumed Silica Leads to Profibrogenic Effects through Unique Structure–Activity Relationships and Biopersistence in the Lung. ACS Nano, 2016, 10, 8054-8066.	14.6	58
60	Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes. Nano Today, 2021, 37, 101061.	11.9	46
61	Identification of target organs of copper nanoparticles with ICP-MS technique. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 599-603.	1.5	45
62	Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment. Nature Communications, 2020, 11, 4249.	12.8	44
63	Targeted drug delivery using iRGD peptide for solid cancer treatment. Molecular Systems Design and Engineering, 2017, 2, 370-379.	3.4	42
64	Safety Considerations of Cancer Nanomedicine—A Key Step toward Translation. Small, 2020, 16, e2000673.	10.0	41
65	Development of self-assembled multi-arm polyrotaxanes nanocarriers for systemic plasmid delivery in vivo. Biomaterials, 2019, 192, 416-428.	11.4	36
66	Development of Facile and Versatile Platinum Drug Delivering Silicasome Nanocarriers for Efficient Pancreatic Cancer Chemoâ€Immunotherapy. Small, 2021, 17, e2005993.	10.0	35
67	MAPKâ€Targeted Drug Delivered by a pHâ€Sensitive MSNP Nanocarrier Synergizes with PDâ€1 Blockade in Melanoma without Tâ€Cell Suppression. Advanced Functional Materials, 2019, 29, 1806916.	14.9	34
68	Consideration for the scaleâ€up manufacture of nanotherapeutics—A critical step for technology transfer. View, 2021, 2, 20200190.	5.3	34
69	Toxicological and biological effects of nanomaterials. International Journal of Nanotechnology, 2007, 4, 179.	0.2	32
70	lmmune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor. Biomaterials, 2021, 269, 120635.	11.4	31
71	Ultrahigh reactivity and grave nanotoxicity of copper nanoparticles. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 595-598.	1.5	30
72	Injectable Biodegradable Polymeric Complex for Glucose-Responsive Insulin Delivery. ACS Nano, 2021, 15, 4294-4304.	14.6	29

#	Article	IF	CITATIONS
73	Nanocellulose Length Determines the Differential Cytotoxic Effects and Inflammatory Responses in Macrophages and Hepatocytes. Small, 2021, 17, e2102545.	10.0	27
74	Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung. ACS Nano, 2017, 11, 1869-1883.	14.6	19
75	In situ observation of C60(C(COOH)2)2 interacting with living cells using fluorescence microscopy. Science Bulletin, 2006, 51, 1060-1064.	1.7	18
76	Use of Nanoformulation to Target Macrophages for Disease Treatment. Advanced Functional Materials, 2021, 31, 2104487.	14.9	17
77	Semiconductor Electronic Label-Free Assay for Predictive Toxicology. Scientific Reports, 2016, 6, 24982.	3.3	15
78	Dissolution of 2D Molybdenum Disulfide Generates Differential Toxicity among Liver Cell Types Compared to Nonâ€īoxic 2D Boron Nitride Effects. Small, 2021, 17, e2101084.	10.0	15
79	Reducing Postoperative Recurrence of Earlyâ€Stage Hepatocellular Carcinoma by a Woundâ€Targeted Nanodrug. Advanced Science, 2022, 9, e2200477.	11.2	15
80	Prodrug nanoparticles rationally integrating stroma modification and chemotherapy to treat metastatic pancreatic cancer. Biomaterials, 2021, 278, 121176.	11.4	14
81	Use of smart designed nanoparticles to impact cancer surgery. Science Bulletin, 2015, 60, 142-143.	9.0	12
82	Precision design of engineered nanomaterials to guide immune systems for disease treatment. Matter, 2022, 5, 1162-1191.	10.0	11
83	Development of Pharmaceutically Adapted Mesoporous Silica Nanoparticles Platform. Journal of Physical Chemistry Letters, 2012, 3, 358-359.	4.6	10
84	Polyrotaxane Nanocarriers Can Deliver CRISPR/Cas9 Plasmid to Dystrophic Muscle Cells to Successfully Edit the DMD Gene. Advanced Therapeutics, 2019, 2, 1900061.	3.2	10
85	Major effect of transcytosis on nano drug delivery to pancreatic cancer. Molecular and Cellular Oncology, 2017, 4, e1335273.	0.7	8
86	A Small-Molecule Approach to Restore a Slow-Oxidative Phenotype and Defective CaMKIIÎ ² Signaling in Limb Girdle Muscular Dystrophy. Cell Reports Medicine, 2020, 1, 100122.	6.5	5
87	Efficient nano-enabled therapy for gastrointestinal cancer using silicasome delivery technology. Science China Chemistry, 2021, 64, 1946-1957.	8.2	5
88	Ratiometric co-delivery of hydroxychloroquine and calculated low-dose paclitaxel efficiently suppresses tumor growth in hepatocellular carcinoma mouse models in vivo. Nano Today, 2022, 44, 101446.	11.9	5
89	Reply to "Assessing the Safety of Nanomaterials by Genomic Approach Could Be Another Alternative― ACS Nano, 2009, 3, 3830-3831.	14.6	4
90	Silicasome Nanocarriers: Development of Facile and Versatile Platinum Drug Delivering Silicasome Nanocarriers for Efficient Pancreatic Cancer Chemoâ€Immunotherapy (Small 14/2021). Small, 2021, 17, 2170065.	10.0	4

#	Article	IF	CITATIONS
91	Neutron-irradiation catalyzed synthesis of novel carbon nanomaterials. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 611-614.	1.5	3
92	Metal Oxides: Zebrafish High-Throughput Screening to Study the Impact of Dissolvable Metal Oxide Nanoparticles on the Hatching Enzyme, ZHE1 (Small 9-10/2013). Small, 2013, 9, 1775-1775.	10.0	2
93	Nanoscience and Nanotechnology at UCLA. ACS Nano, 2019, 13, 6127-6129.	14.6	1
94	Editorial: Targeting the PD-1/PD-L1 Cancer Immune Evasion Axis: Challenges and Emerging Strategies. Frontiers in Pharmacology, 2020, 11, 591188.	3.5	1
95	Chain Fullerene C ₆₀ =C=C ₆₀ =C=C ₆₀ : Possible Way to All-Carbon Polymers. Journal of Nanoscience and Nanotechnology, 2009, 9, 1210-1213.	0.9	0
96	Immunotherapy: MAPKâ€Targeted Drug Delivered by a pHâ€Sensitive MSNP Nanocarrier Synergizes with PDâ€1 Blockade in Melanoma without Tâ€Cell Suppression (Adv. Funct. Mater. 12/2019). Advanced Functional Materials, 2019, 29, 1970079.	14.9	0
97	Immunological effects of nano-enabled hyperthermia for solid tumors: opportunity and challenge. Frontiers of Chemical Science and Engineering, 0, , 1.	4.4	0