Xiaorong Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1841956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effects of biochar soil amendment on rice growth may vary greatly with rice genotypes. Science of the Total Environment, 2022, 810, 152223.	8.0	10
2	Modulation of Growth Duration, Grain Yield and Nitrogen Recovery Efficiency by EMS Mutagenesis under OsNRT2.3b Overexpression Background in Rice. Agriculture (Switzerland), 2022, 12, 799.	3.1	0
3	Effects of Carbon and Nitrogen Fertilisers on Rice Quality of the OsNRT2.3b-Overexpressing Line. Agriculture (Switzerland), 2022, 12, 802.	3.1	0
4	Limited aerenchyma reduces oxygen diffusion and methane emission in paddy. Journal of Environmental Management, 2021, 279, 111583.	7.8	14
5	Reducing phenanthrene uptake and translocation, and accumulation in the seeds by overexpressing OsNRT2.3b in rice. Science of the Total Environment, 2021, 761, 143690.	8.0	10
6	OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. New Phytologist, 2021, 229, 935-949.	7.3	43
7	Plant DNA methylation is sensitive to parent seed N content and influences the growth of rice. BMC Plant Biology, 2021, 21, 211.	3.6	7
8	Rice Seedling Growth Promotion by Biochar Varies With Genotypes and Application Dosages. Frontiers in Plant Science, 2021, 12, 580462.	3.6	13
9	OsLSD1.1 is involved in the photosystem II reaction and affects nitrogen allocation in rice. Plant Physiology and Biochemistry, 2021, 166, 246-257.	5.8	5
10	Genome-Wide Identification and Characterization of GASA Gene Family in Nicotiana tabacum. Frontiers in Genetics, 2021, 12, 768942.	2.3	14
11	Co-Overexpression of OsNAR2.1 and OsNRT2.3a Increased Agronomic Nitrogen Use Efficiency in Transgenic Rice Plants. Frontiers in Plant Science, 2020, 11, 1245.	3.6	57
12	Knockdown of a Novel Gene OsTBP2.2 Increases Sensitivity to Drought Stress in Rice. Genes, 2020, 11, 629.	2.4	6
13	Genetic and Global Epigenetic Modification, Which Determines the Phenotype of Transgenic Rice?. International Journal of Molecular Sciences, 2020, 21, 1819.	4.1	12
14	OsNAR2.1 Interaction with OsNIT1 and OsNIT2 Functions in Root-growth Responses to Nitrate and Ammonium. Plant Physiology, 2020, 183, 289-303.	4.8	23
15	Overexpression of the High-Affinity Nitrate Transporter OsNRT2.3b Driven by Different Promoters in Barley Improves Yield and Nutrient Uptake Balance. International Journal of Molecular Sciences, 2020, 21, 1320.	4.1	17
16	A Rice Autophagy Gene OsATG8b Is Involved in Nitrogen Remobilization and Control of Grain Quality. Frontiers in Plant Science, 2020, 11, 588.	3.6	38
17	A Transcription Factor, OsMADS57, Regulates Long-Distance Nitrate Transport and Root Elongation. Plant Physiology, 2019, 180, 882-895.	4.8	60
18	OsNAR2.1 Positively Regulates Drought Tolerance and Grain Yield Under Drought Stress Conditions in Rice. Frontiers in Plant Science, 2019, 10, 197.	3.6	42

XIAORONG FAN

#	Article	IF	CITATIONS
19	Overexpression of Nitrate Transporter OsNRT2.1 Enhances Nitrate-Dependent Root Elongation. Genes, 2019, 10, 290.	2.4	35
20	Strigolactones affect the translocation of nitrogen in rice. Plant Science, 2018, 270, 190-197.	3.6	25
21	OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. Journal of Experimental Botany, 2018, 69, 1095-1107.	4.8	84
22	Rapid Generation of Barley Mutant Lines With High Nitrogen Uptake Efficiency by Microspore Mutagenesis and Field Screening. Frontiers in Plant Science, 2018, 9, 450.	3.6	18
23	<i><scp>pOsNAR</scp>2.1:Os<scp>NAR</scp>2.1</i> expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnology Journal, 2017, 15, 1273-1283.	8.3	104
24	Rice Sucrose Partitioning Mediated by a Putative Pectin Methyltransferase and Homogalacturonan Methylesterification. Plant Physiology, 2017, 174, 1595-1608.	4.8	25
25	Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation. Plant Cell Reports, 2017, 36, 1287-1296.	5.6	41
26	Plant nitrate transporters: from gene function to application. Journal of Experimental Botany, 2017, 68, 2463-2475.	4.8	237
27	Knock-Down of a Tonoplast Localized Low-Affinity Nitrate Transporter OsNPF7.2 Affects Rice Growth under High Nitrate Supply. Frontiers in Plant Science, 2016, 7, 1529.	3.6	48
28	Agronomic nitrogenâ€use efficiency of rice can be increased by driving <i>Os<scp>NRT</scp>2.1</i> expression with the <i>Os<scp>NAR</scp>2.1</i> promoter. Plant Biotechnology Journal, 2016, 14, 1705-1715.	8.3	169
29	A putative 6â€ŧransmembrane nitrate transporter <i>OsNRT1.1b</i> plays a key role in rice under low nitrogen. Journal of Integrative Plant Biology, 2016, 58, 590-599.	8.5	82
30	Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7118-7123.	7.1	309
31	Knockdown of the partner protein OsNAR2.1 for high-affinity nitrate transport represses lateral root formation in a nitrate-dependent manner. Scientific Reports, 2015, 5, 18192.	3.3	39
32	The Electrochemical Properties of Biochars and How They Affect Soil Redox Properties and Processes. Agronomy, 2015, 5, 322-340.	3.0	122
33	Root aeration improves growth and nitrogen accumulation in rice seedlings under low nitrogen. AoB PLANTS, 2015, 7, plv131.	2.3	24
34	Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. Journal of Experimental Botany, 2015, 66, 317-331.	4.8	140
35	Involvement of <i><scp>O</scp>s<scp>P</scp>ht1;4</i> in phosphate acquisition and mobilization facilitates embryo development in rice. Plant Journal, 2015, 82, 556-569.	5.7	116
36	Identification and functional assay of the interaction motifs in the partner protein <scp>O</scp> s <scp>NAR</scp> 2.1 of the twoâ€component system for highâ€affinity nitrate transport. New Phytologist, 2014, 204, 74-80.	7.3	58

XIAORONG FAN

#	Article	IF	CITATIONS
37	Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. Plant Science, 2014, 227, 1-11.	3.6	90
38	Optimizing plant transporter expression in Xenopus oocytes. Plant Methods, 2013, 9, 48.	4.3	21
39	Knockdown of a Rice Stelar Nitrate Transporter Alters Long-Distance Translocation But Not Root Influx Â. Plant Physiology, 2012, 160, 2052-2063.	4.8	201
40	Plant Nitrogen Assimilation and Use Efficiency. Annual Review of Plant Biology, 2012, 63, 153-182.	18.7	1,446
41	Overâ€expression of <i>OsPIN2</i> leads to increased tiller numbers, angle and shorter plant height through suppression of <i>OsLAZY1</i> . Plant Biotechnology Journal, 2012, 10, 139-149.	8.3	191
42	A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa. Molecular Breeding, 2012, 29, 743-757.	2.1	45
43	Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant, Cell and Environment, 2011, 34, 1360-1372.	5.7	257
44	Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. Journal of Experimental Botany, 2011, 62, 2319-2332.	4.8	280
45	Nitrate transport and signalling. Journal of Experimental Botany, 2007, 58, 2297-2306.	4.8	456