Mar HernÃ;ndez-Guillamon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1841880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MMP-9–Positive Neutrophil Infiltration Is Associated to Blood–Brain Barrier Breakdown and Basal Lamina Type IV Collagen Degradation During Hemorrhagic Transformation After Human Ischemic Stroke. Stroke, 2008, 39, 1121-1126.	2.0	466
2	Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways. Nature Reviews Neurology, 2020, 16, 30-42.	10.1	407
3	Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. Lancet Neurology, The, 2018, 17, 885-894.	10.2	229
4	Brain hemorrhage recurrence, small vessel disease type, and cerebral microbleeds. Neurology, 2017, 89, 820-829.	1.1	180
5	Tissue plasminogen activator (t-PA) promotes neutrophil degranulation and MMP-9 release. Journal of Leukocyte Biology, 2008, 84, 207-214.	3.3	118
6	Sequential Amyloid-β Degradation by the Matrix Metalloproteases MMP-2 and MMP-9. Journal of Biological Chemistry, 2015, 290, 15078-15091.	3.4	107
7	A large screening of angiogenesis biomarkers and their association with neurological outcome after ischemic stroke. Atherosclerosis, 2011, 216, 205-211.	0.8	103
8	Factors Secreted by Endothelial Progenitor Cells Enhance Neurorepair Responses after Cerebral Ischemia in Mice. PLoS ONE, 2013, 8, e73244.	2.5	93
9	MMPâ€2/MMPâ€9 Plasma Level and Brain Expression in Cerebral Amyloid Angiopathyâ€Associated Hemorrhagic Stroke. Brain Pathology, 2012, 22, 133-141.	4.1	73
10	Matrix Metalloproteinases in Alzheimer's Disease and Concurrent Cerebral Microbleeds. Journal of Alzheimer's Disease, 2015, 48, 711-720.	2.6	71
11	Evidence for the efficacy of statins in animal stroke models: a metaâ€enalysis. Journal of Neurochemistry, 2012, 122, 233-243.	3.9	70
12	Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke. Microvascular Research, 2010, 80, 317-323.	2.5	69
13	Differentiating ischemic from hemorrhagic stroke using plasma biomarkers: The S100B/RAGE pathway. Journal of Proteomics, 2012, 75, 4758-4765.	2.4	68
14	Plasma VAP-1/SSAO Activity Predicts Intracranial Hemorrhages and Adverse Neurological Outcome After Tissue Plasminogen Activator Treatment in Stroke. Stroke, 2010, 41, 1528-1535.	2.0	66
15	Matrix Metalloproteinase-13 is Activated and is found in the Nucleus of Neural Cells after Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 398-410.	4.3	61
16	Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats. International Journal of Nanomedicine, 2016, Volume 11, 3035-3048.	6.7	56
17	Plasmatic retinolâ€binding protein 4 and glial fibrillary acidic protein as biomarkers to differentiate ischemic stroke and intracerebral hemorrhage. Journal of Neurochemistry, 2016, 136, 416-424.	3.9	49
18	<i>PATJ</i> Low Frequency Variants Are Associated With Worse Ischemic Stroke Functional Outcome. Circulation Research, 2019, 124, 114-120.	4.5	49

#	Article	IF	CITATIONS
19	Modulation of Amyloid-β1–40 Transport by ApoA1 and ApoJ Across an in vitro Model of the Blood-Brain Barrier. Journal of Alzheimer's Disease, 2016, 53, 677-691.	2.6	45
20	The Proteome of Human Brain After Ischemic Stroke. Journal of Neuropathology and Experimental Neurology, 2010, 69, 1105-1115.	1.7	43
21	Matrix Metalloproteinase 2 (MMP-2) Degrades Soluble Vasculotropic Amyloid-Î ² E22Q and L34V Mutants, Delaying Their Toxicity for Human Brain Microvascular Endothelial Cells. Journal of Biological Chemistry, 2010, 285, 27144-27158.	3.4	43
22	Matrix metalloproteinases and ADAMs in stroke. Cellular and Molecular Life Sciences, 2019, 76, 3117-3140.	5.4	43
23	Plasma β-Amyloid Levels in Cerebral Amyloid Angiopathy-Associated Hemorrhagic Stroke. Neurodegenerative Diseases, 2012, 10, 320-323.	1.4	41
24	VAP-1/SSAO Plasma Activity and Brain Expression in Human Hemorrhagic Stroke. Cerebrovascular Diseases, 2012, 33, 55-63.	1.7	41
25	Fas System Activation in Perihematomal Areas After Spontaneous Intracerebral Hemorrhage. Stroke, 2008, 39, 1730-1734.	2.0	39
26	Cerebral Amyloid Angiopathy-Related Atraumatic Convexal Subarachnoid Hemorrhage: An ARIA before the Tsunami. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 710-717.	4.3	39
27	Advancing diagnostic criteria for sporadic cerebral amyloid angiopathy: Study protocol for a multicenter MRI-pathology validation of Boston criteria v2.0. International Journal of Stroke, 2019, 14, 956-971.	5.9	39
28	Neuronal TIMPâ€1 release accompanies astrocytic MMPâ€9 secretion and enhances astrocyte proliferation induced by βâ€amyloid 25–35 fragment. Journal of Neuroscience Research, 2009, 87, 2115-2125.	2.9	34
29	Cerebral ischaemia and matrix metalloproteinaseâ€9 modulate the angiogenic function of early and late outgrowth endothelial progenitor cells. Journal of Cellular and Molecular Medicine, 2013, 17, 1543-1553.	3.6	34
30	Characterization of ApoJ-reconstituted high-density lipoprotein (rHDL) nanodisc for the potential treatment of cerebral Î ² -amyloidosis. Scientific Reports, 2017, 7, 14637.	3.3	31
31	Intravenous treatment with human recombinant ApoA-I Milano reduces beta amyloid cerebral deposition in the APP23-transgenic mouse model of Alzheimer's disease. Neurobiology of Aging, 2017, 60, 116-128.	3.1	29
32	Peripheral administration of human recombinant ApoJ/clusterin modulates brain beta-amyloid levels in APP23 mice. Alzheimer's Research and Therapy, 2019, 11, 42.	6.2	29
33	p53 phosphorylation is involved in vascular cell death induced by the catalytic activity of membrane-bound SSAO/VAP-1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1085-1094.	4.1	27
34	Brain proteomics identifies potential simvastatin targets in acute phase of stroke in a rat embolic model. Journal of Neurochemistry, 2014, 130, 301-312.	3.9	25
35	CCL23: A Chemokine Associated with Progression from Mild Cognitive Impairment to Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 73, 1585-1595.	2.6	25
36	Profiling and identification of new proteins involved in brain ischemia using MALDI-imaging-mass-spectrometry. Journal of Proteomics, 2017, 152, 243-253.	2.4	23

#	Article	IF	CITATIONS
37	Brain ApoA-I, ApoJ and ApoE Immunodetection in Cerebral Amyloid Angiopathy. Frontiers in Neurology, 2019, 10, 187.	2.4	23
38	ACE variants and risk of intracerebral hemorrhage recurrence in amyloid angiopathy. Neurobiology of Aging, 2011, 32, 551.e13-551.e22.	3.1	22
39	ApoA1, ApoJ and ApoE Plasma Levels and Genotype Frequencies in Cerebral Amyloid Angiopathy. NeuroMolecular Medicine, 2016, 18, 99-108.	3.4	20
40	The angiogenic gene profile of circulating endothelial progenitor cells from ischemic stroke patients. Vascular Cell, 2013, 5, 3.	0.2	18
41	Genes involved in hemorrhagic transformations that follow recombinant t-PA treatment in stroke patients. Pharmacogenomics, 2013, 14, 495-504.	1.3	18
42	Survival Bias and Crosstalk between Chronological and Behavioral Age: Age- and Genotype-Sensitivity Tests Define Behavioral Signatures in Middle-Aged, Old, and Long-Lived Mice with Normal and AD-Associated Aging. Biomedicines, 2021, 9, 636.	3.2	18
43	Characterization of secretomes from a human blood brain barrier endothelial cells in-vitro model after ischemia by stable isotope labeling with aminoacids in cell culture (SILAC). Journal of Proteomics, 2016, 133, 100-112.	2.4	17
44	NURR1 Involvement in Recombinant Tissue-Type Plasminogen Activator Treatment Complications After Ischemic Stroke. Stroke, 2015, 46, 477-484.	2.0	14
45	SSAO/VAP-1 in Cerebrovascular Disorders: A Potential Therapeutic Target for Stroke and Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 3365.	4.1	14
46	Association of CD2AP neuronal deposits with Braak neurofibrillary stage in Alzheimer's disease. Brain Pathology, 2022, 32, e13016.	4.1	13
47	MFG-E8 (LACTADHERIN): a novel marker associated with cerebral amyloid angiopathy. Acta Neuropathologica Communications, 2021, 9, 154.	5.2	11
48	Combining Statins with Tissue Plasminogen Activator Treatment After Experimental and Human Stroke: A Safety Study on Hemorrhagic Transformation. CNS Neuroscience and Therapeutics, 2013, 19, 863-870.	3.9	10
49	Fluorescent Molecular Peroxidation Products. Stroke, 2014, 45, 432-437.	2.0	10
50	Simvastatin blocks soluble SSAO/VAP-1 release in experimental models of cerebral ischemia: Possible benefits for stroke-induced inflammation control. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 542-553.	3.8	10
51	Impact of Cerebral Amyloid Angiopathy in Two Transgenic Mouse Models of Cerebral β-Amyloidosis: A Neuropathological Study. International Journal of Molecular Sciences, 2022, 23, 4972.	4.1	8
52	Comparison of Plasma Lipoprotein Composition and Function in Cerebral Amyloid Angiopathy and Alzheimer's Disease. Biomedicines, 2021, 9, 72.	3.2	7
53	Sodium Bicarbonate Enhances Membrane-bound and Soluble Human Semicarbazide-sensitive Amine Oxidase Activity In Vitro. Journal of Biochemistry, 2007, 142, 571-576.	1.7	5
54	Mild hypothermia protects against oxygen glucose deprivation (OGD)-induced cell death in brain slices from adult mice. Journal of Neural Transmission, 2014, 121, 113-117.	2.8	5

#	Article	IF	CITATIONS
55	Circulating TIMP-1 is associated with hematoma volume in patients with spontaneous intracranial hemorrhage. Scientific Reports, 2020, 10, 10329.	3.3	5
56	Circulating AQP4 Levels in Patients with Cerebral Amyloid Angiopathy-Associated Intracerebral Hemorrhage. Journal of Clinical Medicine, 2021, 10, 989.	2.4	5
57	Identification of Plasma Biomarkers of Human Intracerebral Hemorrhage Subtypes through Microarray Technology. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 665-671.	1.6	4
58	New candidate blood biomarkers potentially associated with white matter hyperintensities progression. Scientific Reports, 2021, 11, 14324.	3.3	4
59	Rat Middle Cerebral Artery Occlusion Is Not a Suitable Model for the Study of Stroke-Induced Spontaneous Infections. PLoS ONE, 2014, 9, e99169.	2.5	2