
Esther Middelkoop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1841449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Patient and Observer Scar Assessment Scale: A Reliable and Feasible Tool for Scar Evaluation. Plastic and Reconstructive Surgery, 2004, 113, 1960-1965.	0.7	980
2	Differences in Cellular Infiltrate and Extracellular Matrix of Chronic Diabetic and Venous Ulcers Versus Acute Wounds. Journal of Investigative Dermatology, 1998, 111, 850-857.	0.3	490
3	Potential cellular and molecular causes of hypertrophic scar formation. Burns, 2009, 35, 15-29.	1.1	305
4	Updated Scar Management Practical Guidelines: Non-invasive and invasive measures. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2014, 67, 1017-1025.	0.5	270
5	Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: An objective histopathological analysis. Wound Repair and Regeneration, 2009, 17, 649-656.	1.5	237
6	Prevention and curative management of hypertrophic scar formation. Burns, 2009, 35, 463-475.	1.1	224
7	Biological background of dermal substitutes. Burns, 2010, 36, 305-321.	1.1	213
8	Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls. European Journal of Cell Biology, 2002, 81, 153-160.	1.6	195
9	Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulin-dependent) Tj ETQq1 1 C).784314 r 1.1	gBT_/Overlock
10	Review: Lessons Learned From Clinical Trials Using Antimicrobial Peptides (AMPs). Frontiers in Microbiology, 2021, 12, 616979.	1.5	188
11	Increased formation of pyridinoline cross-links due to higher telopeptide lysyl hydroxylase levels is a general fibrotic phenomenon. Matrix Biology, 2004, 23, 251-257.	1.5	181
12	Skin elasticity meter or subjective evaluation in scars: a reliability assessment. Burns, 2004, 30, 109-114.	1.1	161
13	Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation. Journal of Pathology, 2000, 190, 595-603.	2.1	148
14	Collagen morphology in human skin and scar tissue: no adaptations in response to mechanical loading at joints. Burns, 2003, 29, 423-431.	1.1	145
15	Extracellular matrix characterization during healing of full-thickness wounds treated with a collagen/elastin dermal substitute shows improved skin regeneration in pigs Journal of Histochemistry and Cytochemistry, 1996, 44, 1311-1322.	1.3	135
16	Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?. Burns, 2004, 30, 103-107.	1.1	132
17	Itching following burns: epidemiology and predictors. British Journal of Dermatology, 2007, 158, 071106220718003-???.	1.4	132
18	Scar Assessment Tools: Implications for Current Research. Plastic and Reconstructive Surgery, 2002, 109, 1108-1122.	0.7	128

#	Article	IF	CITATIONS
19	Comparison between human fetal and adult skin. Archives of Dermatological Research, 2010, 302, 47-55.	1.1	127
20	Porcine wound models for skin substitution and burn treatment. Biomaterials, 2004, 25, 1559-1567.	5.7	124
21	Costs of burn care: A systematic review. Wound Repair and Regeneration, 2014, 22, 436-450.	1.5	119
22	Rasch analysis of the Patient and Observer Scar Assessment Scale (POSAS) in burn scars. Quality of Life Research, 2012, 21, 13-23.	1.5	117
23	Graft Survival and Effectiveness of Dermal Substitution in Burns and Reconstructive Surgery in a One-Stage Grafting Model. Plastic and Reconstructive Surgery, 2000, 106, 615-623.	0.7	116
24	Dermal Substitution in Acute Burns and Reconstructive Surgery: A Subjective and Objective Long-Term Follow-Up. Plastic and Reconstructive Surgery, 2001, 108, 1938-1946.	0.7	116
25	Dermal Substitution in Acute Burns and Reconstructive Surgery: A 12-Year Follow-Up. Plastic and Reconstructive Surgery, 2010, 125, 1450-1459.	0.7	110
26	Outcome after burns: An observational study on burn scar maturation and predictors for severe scarring. Wound Repair and Regeneration, 2012, 20, 676-687.	1.5	109
27	Topical Silicone Gel versus Placebo in Promoting the Maturation of Burn Scars: A Randomized Controlled Trial. Plastic and Reconstructive Surgery, 2010, 126, 524-531.	0.7	95
28	Graft Survival and Effectiveness of Dermal Substitution in Burns and Reconstructive Surgery in a One-Stage Grafting Model. Plastic and Reconstructive Surgery, 2000, 106, 615-623.	0.7	93
29	Studies on sickled erythrocytes provide evidence that the asymmetric distribution of phosphatidylserine in the red cell membrane is maintained by both ATP-dependent translocation and interaction with membrane skeletal proteins. Biochimica Et Biophysica Acta - Biomembranes, 1988, 937, 281-288.	1.4	92
30	Living Skin Substitutes: Survival and Function of Fibroblasts Seeded in a Dermal Substitute in Experimental Wounds. Journal of Investigative Dermatology, 1998, 111, 989-995.	0.3	91
31	Morphometry of dermal collagen orientation by Fourier analysis is superior to multi-observer assessment. Journal of Pathology, 2002, 198, 284-291.	2.1	91
32	Reduced wound contraction and scar formation in punch biopsy wounds. Native collagen dermal substitutes. A clinical study. British Journal of Dermatology, 1995, 132, 690-697.	1.4	91
33	Thermosensitive biomimetic polyisocyanopeptide hydrogels may facilitate wound repair. Biomaterials, 2018, 181, 392-401.	5.7	90
34	Cross-linking of dermal sheep collagen with tannic acid. Biomaterials, 1997, 18, 749-754.	5.7	88
35	Objective Scar Assessment Tools: A Clinimetric Appraisal. Plastic and Reconstructive Surgery, 2011, 127, 1561-1570.	0.7	86
36	Dermal regeneration in native non-cross-linked collagen sponges with different extracellular matrix molecules. Wound Repair and Regeneration, 1994, 2, 37-47.	1.5	85

#	Article	IF	CITATIONS
37	Optimal treatment of partial thickness burns in children: A systematic review. Burns, 2014, 40, 177-190.	1.1	85
38	Flip-flop rates of individual molecular species of phosphatidylcholine in the human red cell membrane. Biochimica Et Biophysica Acta - Biomembranes, 1986, 855, 421-424.	1.4	82
39	An objective device for measuring surface roughness of skin and scars. Journal of the American Academy of Dermatology, 2011, 64, 706-715.	0.6	82
40	Epidemiology and trends in severe burns in the Netherlands. Burns, 2014, 40, 1406-1414.	1.1	77
41	The suitability of cells from different tissues for use in tissue-engineered skin substitutes. Archives of Dermatological Research, 2002, 294, 135-142.	1.1	74
42	Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans. Wound Repair and Regeneration, 2011, 19, 292-301.	1.5	72
43	A Clinimetric Overview of Scar Assessment Scales. Journal of Burn Care and Research, 2012, 33, e79-e87.	0.2	71
44	Objective Color Measurements. Journal of Burn Care and Research, 2013, 34, e187-e194.	0.2	70
45	Non-pharmacological nursing interventions for procedural pain relief in adults with burns: A systematic literature review. Burns, 2007, 33, 811-827.	1.1	67
46	Impact of facial burns: relationship between depressive symptoms, self-esteem and scar severity. General Hospital Psychiatry, 2014, 36, 271-276.	1.2	64
47	Wound healing in a fetal, adult, and scar tissue model: A comparative study. Wound Repair and Regeneration, 2010, 18, 291-301.	1.5	61
48	A Cultured Autologous Dermo-epidermal Skin Substitute for Full-Thickness Skin Defects: A Phase I, Open, Prospective Clinical Trial in Children. Plastic and Reconstructive Surgery, 2019, 144, 188-198.	0.7	61
49	Clinical effectiveness of dermal substitution in burns by topical negative pressure: A multicenter randomized controlled trial. Wound Repair and Regeneration, 2012, 20, 797-805.	1.5	59
50	Allogeneic fibroblasts in dermal substitutes induce inflammation and scar formation. Wound Repair and Regeneration, 2002, 10, 152-160.	1.5	58
51	Dermal substitutes for full-thickness wounds in a one-stage grafting model. Wound Repair and Regeneration, 1993, 1, 244-252.	1.5	57
52	Acute Inflammation is Persistent Locally in Burn Wounds: A Pivotal Role for Complement and C-Reactive Protein. Journal of Burn Care and Research, 2009, 30, 274-280.	0.2	57
53	Effect of pore size and cross-linking of a novel collagen-elastin dermal substitute on wound healing. Journal of Materials Science: Materials in Medicine, 2014, 25, 423-433.	1.7	56
54	MICROBIOLOGICAL EVALUATION OF GLYCEROLIZED CADAVERIC DONOR SKIN. Transplantation, 1998, 65, 966-970.	0.5	56

#	Article	IF	CITATIONS
55	Adherence, proliferation and collagen turnover by human fibroblasts seeded into different types of collagen sponges. Cell and Tissue Research, 1995, 280, 447-453.	1.5	55
56	A newly developed hydrofibre dressing, in the treatment of partial-thickness burns. Burns, 2001, 27, 167-173.	1.1	55
57	Development of an in vitro burn wound model. Wound Repair and Regeneration, 2008, 16, 559-567.	1.5	55
58	Considerations on the Use of Platelet-Rich Plasma, Specifically for Burn Treatment. Journal of Burn Care and Research, 2014, 35, 219-227.	0.2	55
59	A cytotoxic analysis of antiseptic medication on skin substitutes and autograft. British Journal of Dermatology, 2007, 157, 33-40.	1.4	54
60	Differential Response of Human Adipose Tissue-Derived Mesenchymal Stem Cells, Dermal Fibroblasts, and Keratinocytes to Burn Wound Exudates: Potential Role of Skin-Specific Chemokine CCL27. Tissue Engineering - Part A, 2014, 20, 197-209.	1.6	53
61	Culture of Keratinocytes for Transplantation without the Need of Feeder Layer Cells. Cell Transplantation, 2007, 16, 649-661.	1.2	52
62	Reliability, validity and clinical utility of three types of pain behavioural observation scales for young children with burns aged 0–5 years. Pain, 2010, 150, 561-567.	2.0	51
63	Adaptation of the dermal collagen structure of human skin and scar tissue in response to stretch: An experimental study. Wound Repair and Regeneration, 2012, 20, 658-666.	1.5	50
64	A randomised clinical trial comparing a hydrocolloid-derived dressing and glycerol preserved allograft skin in the management of partial thickness burns. Burns, 2003, 29, 702-710.	1.1	48
65	Accumulation of organic anion in intracellular vesicles of cultured rat hepatocytes is mediated by the canalicular multispecific organic anion transporter. Hepatology, 1993, 17, 434-444.	3.6	46
66	Long-term results of a clinical trial on dermal substitution Burns, 2002, 28, 151-160.	1.1	45
67	Altered <scp>TGF</scp> â€î² signaling in fetal fibroblasts: What is known about the underlying mechanisms?. Wound Repair and Regeneration, 2014, 22, 3-13.	1.5	45
68	Mortality and causes of death of Dutch burn patients during the period 2006–2011. Burns, 2015, 41, 235-240.	1.1	45
69	The application of plateletâ€rich plasma in the treatment of deep dermal burns: A randomized, doubleâ€blind, intraâ€patient controlled study. Wound Repair and Regeneration, 2016, 24, 712-720.	1.5	45
70	Effectiveness of Autologous Fat Grafting in Adherent Scars: Results Obtained by a Comprehensive Scar Evaluation Protocol. Plastic and Reconstructive Surgery, 2017, 139, 212-219.	0.7	45
71	Transepidermal water loss measured with the Tewameter TM300 in burn scars. Burns, 2016, 42, 1455-1462.	1.1	44
72	Patientâ€reported scar quality of adults after burn injuries: A fiveâ€year multicenter followâ€up study. Wound Repair and Regeneration, 2019, 27, 406-414.	1.5	43

#	Article	IF	CITATIONS
73	Collagen crossâ€linking by adiposeâ€derived mesenchymal stromal cells and scarâ€derived mesenchymal cells: Are mesenchymal stromal cells involved in scar formation?. Wound Repair and Regeneration, 2009, 17, 548-558.	1.5	42
74	Outcome of Burns Treated with Autologous Cultured Proliferating Epidermal Cells: A Prospective Randomized Multicenter Intrapatient Comparative Trial. Cell Transplantation, 2016, 25, 437-448.	1.2	42
75	Cadexomer-iodine ointment shows stimulation of epidermal regeneration in experimental full-thickness wounds. Archives of Dermatological Research, 1998, 290, 18-24.	1.1	41
76	New dermal substitutes. Wound Repair and Regeneration, 2011, 19, s59-65.	1.5	41
77	Burns to the head and neck: Epidemiology and predictors of surgery. Burns, 2013, 39, 1184-1192.	1.1	41
78	Reconstructive surgery after burns: A 10-year follow-up study. Burns, 2014, 40, 1544-1551.	1.1	39
79	Accumulation of organic anion in intracellular vesicles of cultured rat hepatocytes is mediated by the canalicular multispecific organic anion transporter. Hepatology, 1993, 17, 434-444.	3.6	39
80	Use of a Collagen–Elastin Matrix as Transport Carrier System to Transfer Proliferating Epidermal Cells to Human Dermis in Vitro. Cell Transplantation, 2010, 19, 1339-1348.	1.2	38
81	Involvement of ATP-dependent aminophospholipid translocation in maintaining phospholipid asymmetry in diamide-treated human erythrocytes. Biochimica Et Biophysica Acta - Biomembranes, 1989, 981, 151-160.	1.4	37
82	Predictive validity of short term scar quality on final burn scar outcome using the Patient and Observer Scar Assessment Scale in patients with minor to moderate burn severity. Burns, 2017, 43, 715-723.	1.1	37
83	Digital image analysis versus clinical assessment of wound epithelialization: A validation study. Burns, 2012, 38, 501-505.	1.1	36
84	Collagen bundle morphometry in skin and scar tissue: a novel distance mapping method provides superior measurements compared to Fourier analysis. Journal of Microscopy, 2012, 245, 82-89.	0.8	36
85	Progress towards cell-based burn wound treatments. Regenerative Medicine, 2014, 9, 201-218.	0.8	36
86	Topology of catalase assembly in human skin fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1220, 15-20.	1.9	35
87	THE 1998 LINDBERG AWARD Comparison of Glycerol Preservation With Cryopreservation Methods on HIV-1 Inactivation. Journal of Burn Care and Research, 1998, 19, 494-503.	1.7	35
88	Expression profile of proteins involved in scar formation in the healing process of full-thickness excisional wounds in the porcine model. Wound Repair and Regeneration, 2007, 15, 482-490.	1.5	35
89	Epidemiology of children admitted to the Dutch burn centres. Changes in referral influence admittance rates in burn centres. Burns, 2011, 37, 1161-1167.	1.1	34
90	Prolonged C1 Inhibitor Administration Improves Local Healing of Burn Wounds and Reduces Myocardial Inflammation in a Rat Burn Wound Model. Journal of Burn Care and Research, 2012, 33, 544-551.	0.2	33

#	Article	IF	CITATIONS
91	Patient reported facial scar assessment: directions for the professional. Burns, 2014, 40, 347-353.	1.1	33
92	Cost-Effectiveness of Laser Doppler Imaging in Burn Care in The Netherlands. Plastic and Reconstructive Surgery, 2016, 137, 166e-176e.	0.7	32
93	A new flexible DBD device for treating infected wounds: <i>in vitro</i> and <i>ex vivo</i> evaluation and comparison with a RF argon plasma jet. Journal Physics D: Applied Physics, 2016, 49, 044001.	1.3	32
94	Reliability of subjective wound assessment. Burns, 2011, 37, 566-571.	1.1	31
95	Does aminotriazole inhibit import of catalase into peroxisomes by retarding unfolding?. FEBS Letters, 1991, 279, 79-82.	1.3	29
96	Reliability and Accuracy of Techniques for Surface Area Measurements of Wounds and Scars. International Journal of Lower Extremity Wounds, 2004, 3, 7-11.	0.6	29
97	Tissue engineering in burn scar reconstruction. Burns and Trauma, 2015, 3, 18.	2.3	29
98	Economic burden of burn injuries in the Netherlands: A 3 months follow-up study. Injury, 2016, 47, 203-210.	0.7	29
99	Sustainable effect of skin stretching for burn scar excision: Long-term results of a multicenter randomized controlled trial. Burns, 2011, 37, 1222-1228.	1.1	28
100	An Overview of Methods for the <i>In Vivo</i> Evaluation of Tissue-Engineered Skin Constructs. Tissue Engineering - Part B: Reviews, 2011, 17, 33-55.	2.5	28
101	Effectiveness of Cerium Nitrate–Silver Sulfadiazine in the Treatment of Facial Burns. Plastic and Reconstructive Surgery, 2012, 130, 274e-283e.	0.7	27
102	Cost-effectiveness of laser Doppler imaging in burn care in the Netherlands. BMC Surgery, 2013, 13, 2.	0.6	27
103	Photographic assessment of burn size and depth: reliability and validity. Journal of Wound Care, 2014, 23, 144-152.	0.5	27
104	Return to work after specialised burn care: A two-year prospective follow-up study of the prevalence, predictors and related costs. Injury, 2016, 47, 1975-1982.	0.7	27
105	Differential item functioning in the Observer Scale of the POSAS for different scar types. Quality of Life Research, 2014, 23, 2037-2045.	1.5	26
106	Burns in the elderly: a nationwide study on management and clinical outcomes. Burns and Trauma, 2020, 8, tkaa027.	2.3	26
107	Activation, function and content of platelets in burn patients. Platelets, 2019, 30, 396-402.	1.1	25
108	Safety and bactericidal efficacy of cold atmospheric plasma generated by a flexible surface Dielectric Barrier Discharge device against Pseudomonas aeruginosa in vitro and in vivo. Annals of Clinical Microbiology and Antimicrobials, 2020, 19, 37.	1.7	25

#	Article	IF	CITATIONS
109	Development of a nursing workload measurement instrument in burn care. Burns, 2009, 35, 942-948.	1.1	24
110	A reliable, non-invasive measurement tool for anisotropy in normal skin and scar tissue. Skin Research and Technology, 2010, 16, 325-31.	0.8	24
111	Design and in vivo evaluation of a molecularly defined acellular skin construct: Reduction of early contraction and increase in early blood vessel formation. Acta Biomaterialia, 2011, 7, 1063-1071.	4.1	24
112	Longâ€ŧerm scar quality in burns with three distinct healing potentials: A multicenter prospective cohort study. Wound Repair and Regeneration, 2016, 24, 721-730.	1.5	24
113	Antibacterial and safety tests of a flexible cold atmospheric plasma device for the stimulation of wound healing. Applied Microbiology and Biotechnology, 2021, 105, 2057-2070.	1.7	24
114	Stem Cells in Burn Eschar. Cell Transplantation, 2012, 21, 933-942.	1.2	23
115	Mechanical cues in orofacial tissue engineering and regenerative medicine. Wound Repair and Regeneration, 2015, 23, 302-311.	1.5	23
116	The visual analogue thermometer and the graphic numeric rating scale: A comparison of self-report instruments for pain measurement in adults with burns. Burns, 2015, 41, 333-340.	1.1	23
117	Allogeneic plateletâ€rich plasma (PRP) is superior to platelets or plasma alone in stimulating fibroblast proliferation and migration, angiogenesis, and chemotaxis as relevant processes for wound healing. Transfusion, 2019, 59, 3492-3500.	0.8	23
118	Monitoring ¹¹¹ In-labelled polyisocyanopeptide (PIC) hydrogel wound dressings in full-thickness wounds. Biomaterials Science, 2019, 7, 3041-3050.	2.6	22
119	The use of a PEG tube in a burn centre. Burns, 2002, 28, 191-197.	1.1	21
120	ltch in Burn Areas After Skin Transplantation: Patient Characteristics, Influencing Factors and Therapy. Acta Dermato-Venereologica, 2015, 95, 451-456.	0.6	21
121	Application of hydrosurgery for burn wound debridement: An 8-year cohort analysis. Burns, 2019, 45, 88-96.	1.1	21
122	Upside-down transfer of porcine keratinocytes from a porous, synthetic dressing to experimental full-thickness wounds. Wound Repair and Regeneration, 2004, 12, 225-234.	1.5	20
123	Differential effects of Losartan and Atorvastatin in partial and full thickness burn wounds. PLoS ONE, 2017, 12, e0179350.	1.1	19
124	Production and characterisation of monoclonal antibodies against native and disassembled human catalase. Journal of Immunological Methods, 1992, 151, 165-175.	0.6	17
125	Differential expression of CRABP-II in fibroblasts derived from dermis and subcutaneous fat. Biochemical and Biophysical Research Communications, 2004, 315, 428-433.	1.0	17
126	Topical treatment for facial burns. The Cochrane Library, 2013, , CD008058.	1.5	17

#	Article	IF	CITATIONS
127	Cost study of dermal substitutes and topical negative pressure in the surgical treatment of burns. Burns, 2014, 40, 388-396.	1.1	17
128	A systematic review on surgical and nonsurgical debridement techniques of burn wounds. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2019, 72, 1752-1762.	0.5	17
129	Growth Factor Quantification of Platelet-Rich Plasma in Burn Patients Compared to Matched Healthy Volunteers. International Journal of Molecular Sciences, 2019, 20, 288.	1.8	17
130	Pain in young children with burns: Extent, course and influencing factors. Burns, 2014, 40, 38-47.	1.1	16
131	Cell therapy for full-thickness wounds: are fetal dermal cells a potential source?. Cell and Tissue Research, 2016, 364, 83-94.	1.5	16
132	Improved and standardized method for assessing years lived with disability after burns and its application to estimate the non-fatal burden of disease of burn injuries in Australia, New Zealand and the Netherlands. BMC Public Health, 2020, 20, 121.	1.2	16
133	A systematic review evaluating the influence of incisional Negative Pressure Wound Therapy on scarring. Wound Repair and Regeneration, 2021, 29, 8-19.	1.5	14
134	Aminophospholipid translocase in the plasma membrane of Friend erythroleukemic cells can induce an asymmetric topology for phosphatidylserine but not for phosphatidylethanolamine. Biochimica Et Biophysica Acta - Biomembranes, 1989, 978, 241-248.	1.4	13
135	Efficacy of Skin Stretching for Burn Scar Excision: A Multicenter Randomized Controlled Trial. Plastic and Reconstructive Surgery, 2011, 127, 1958-1966.	0.7	13
136	Construct validity of two pain behaviour observation measurement instruments for young children with burns by Rasch analysis. Pain, 2012, 153, 2260-2266.	2.0	13
137	Early intervention by Captopril does not improve wound healing of partial thickness burn wounds in a rat model. Burns, 2018, 44, 429-435.	1.1	12
138	Electrocautery in arthroscopic surgery: intra-articular fluid temperatures above 43°C cause potential tissue damage. Knee Surgery, Sports Traumatology, Arthroscopy, 2020, 28, 2270-2278.	2.3	12
139	Patient-reported scar quality of donor-sites following split-skin grafting in burn patients: Long-term results of a prospective cohort study. Burns, 2021, 47, 315-321.	1.1	12
140	Antibacterial plasma at safe levels for skin cells. Journal Physics D: Applied Physics, 2013, 46, 422001.	1.3	11
141	Sustainable effectiveness of singleâ€ŧreatment autologous fat grafting in adherent scars. Wound Repair and Regeneration, 2017, 25, 316-319.	1.5	11
142	Indications and Predictors for Reconstructive Surgery After Hand Burns. Journal of Hand Surgery, 2017, 42, 351-358.	0.7	11
143	Long-term scar quality after hydrosurgical versus conventional debridement of deep dermal burns (HyCon trial): study protocol for a randomized controlled trial. Trials, 2018, 19, 239.	0.7	11
144	Potential factors contributing to the poor antimicrobial efficacy of SAAP-148 in a rat wound infection model. Annals of Clinical Microbiology and Antimicrobials, 2019, 18, 38.	1.7	11

#	Article	IF	CITATIONS
145	Assessing blood flow, microvasculature, erythema and redness in hypertrophic scars: A cross sectional study showing different features that require precise definitions. Burns, 2017, 43, 1044-1050.	1.1	10
146	Detection of bacteria in burn wounds with a novel handheld autofluorescence wound imaging device: a pilot study. Journal of Wound Care, 2019, 28, 548-554.	0.5	10
147	Adherence, proliferation and collagen turnover by human fibroblasts seeded into different types of collagen sponges. Cell and Tissue Research, 1995, 280, 447-453.	1.5	10
148	The Modified Patient and Observer Scar Assessment Scale. Plastic and Reconstructive Surgery, 2012, 129, 172e-174e.	0.7	9
149	Skin Substitutes and â€`the next level'. , 2018, , 167-173.e2.		9
150	Scar quality in children with burns 5–7 years after injury: A crossâ€sectional multicentre study. Wound Repair and Regeneration, 2021, 29, 951-960.	1.5	9
151	PHENOLIC SUBSTANCES IN A HUMUSPODZOL PROFILE AND THEIR IMPACT ON SOME WOODLAND HERBS AT LOW NUTRIENT SUPPLY. Acta Botanica Neerlandica, 1987, 36, 261-270.	1.0	8
152	Evaluation of measurement properties of health-related quality of life instruments for burns: A systematic review. Journal of Trauma and Acute Care Surgery, 2020, 88, 555-571.	1.1	8
153	The presence of tissue renin-angiotensin system components in human burn wounds and scars. Burns Open, 2018, 2, 114-121.	0.2	7
154	Preexpansion in Phalloplasty Patients. Annals of Plastic Surgery, 2019, 83, 687-692.	0.5	7
155	HIV transmission by transplantation of allograft skin: a review of the literature. Burns, 1997, 23, 460.	1.1	6
156	A call for evidence: Timing of surgery in burns. Burns, 2012, 38, 617-618.	1.1	6
157	Topical treatment for facial burns. The Cochrane Library, 2020, 2020, CD008058.	1.5	6
158	Validity of laser speckle contrast imaging for the prediction of burn wound healing potential. Burns, 2022, 48, 319-327.	1.1	6
159	The Future of Burn Care From a Complexity Science Perspective. Journal of Burn Care and Research, 2022, 43, 1312-1321.	0.2	6
160	Fibroblast Phenotypes and Their Relevance for Wound Healing. International Journal of Lower Extremity Wounds, 2005, 4, 9-11.	0.6	5
161	Doxepin cream is not effective in reducing itch in burn scar patients: A multicenter triple-blind randomized clinical crossover trial. Burns, 2020, 46, 340-346.	1.1	5
162	Course of scar quality of donor sites following split skin graft harvesting: Comparison between patients and observers. Wound Repair and Regeneration, 2020, 28, 696-703.	1.5	5

Esther Middelkoop

#	Article	IF	CITATIONS
163	The Impact of Incisional Negative Pressure Wound on Scar Quality and Patient Reported Outcomes: a Withinâ€Patient Controlled, Randomized Trial. Wound Repair and Regeneration, 2022, , .	1.5	5
164	Correspondence. Burns, 1998, 24, 687.	1.1	4
165	Costs of Burn Care: A Systematic Review. Value in Health, 2014, 17, A606.	0.1	4
166	Response to the letter to the Editor: â€~Scarring in partial thickness burns in children'. Burns, 2014, 40, 1055.	1.1	4
167	Response to Burns in the Elderly: What is Pathophysiology and What is Physiology?. EBioMedicine, 2015, 2, 1314-1315.	2.7	4
168	Models for cutaneous wound healing. Wound Repair and Regeneration, 2017, 25, 347-348.	1.5	4
169	SPS-neutralization in tissue samples for efficacy testing of antimicrobial peptides. BMC Infectious Diseases, 2019, 19, 1093.	1.3	4
170	Within-patient randomized clinical trial comparing incisional negative-pressure wound therapy with suction drains in gender-affirming mastectomies. British Journal of Surgery, 2021, 108, 925-933.	0.1	4
171	Variation in plateletâ€rich plasma compositions used for wound healing indications. Wound Repair and Regeneration, 2021, 29, 284-287.	1.5	4
172	Hydrosurgical and conventional debridement of burns: randomized clinical trial. British Journal of Surgery, 2022, 109, 332-339.	0.1	4
173	Scar formation from the perspective of complexity science: a new look at the biological system as a whole. Journal of Wound Care, 2022, 31, 178-184.	0.5	4
174	Murine erythrocytes contain high levels of lysophospholipase activity. Lipids and Lipid Metabolism, 1984, 792, 99-102.	2.6	3
175	Scar assessment. , 2012, , 69-89.		3
176	Full-thickness burns of the palm caused by hot wax. Burns, 1997, 23, 458-459.	1.1	2
177	Impact of Modification of Burn Center Referral Criteria on Primary Patient Outcome. Journal of Burn Care and Research, 2006, 27, 854-858.	0.2	2
178	Early excision and grafting for burns. The Cochrane Library, 2012, , .	1.5	2
179	Comparing doxepin cream to oral antihistamines for the treatment of itch in burn patients: A multi-center triple-blind randomized controlled trial. Burns Open, 2019, 3, 135-140.	0.2	2
180	Provincializing the International: Communist Print Worlds in Colonial India. History Workshop Journal, 2020, 89, 140-153.	0.2	2

#	Article	IF	CITATIONS
181	Silver Sulfadiazine Cream Treatment Results in More Wound Contraction and More Itch in a Standardized Porcine Scald Model. Journal of Burn Care and Research, 2021, 42, 1017-1022.	0.2	2
182	Twelve year follow-up: A clinical study on dermal regeneration. , 2012, , 169-180.		2
183	Perichondrium-Wrapped Collagenous Matrices to Induce Chondroneogenesis. Archives of Facial Plastic Surgery, 2001, 3, 122-126.	0.8	1
184	Commentary on: "The effect of moist and moist exposed dressings on healing and barrier function restoration of partial thickness wounds" by Atiyeh et al European Journal of Plastic Surgery, 2003, 26, 12-12.	0.3	1
185	On the surgical treatment of hypertrophic scars: a comprehensive guideline for the surgical treatment of hypertrophic scars. European Surgery - Acta Chirurgica Austriaca, 2012, 44, 79-84.	0.3	1
186	Economic Burden of Burn Injuries in the Netherlands. Value in Health, 2014, 17, A606-A607.	0.1	1
187	Des échelles pour évaluer les cicatrices. Revue Francophone De Cicatrisation, 2018, 2, 22-25.	0.0	1
188	Is the time right to put down the knife? A call for evidence-based decision making. Burns, 2018, 44, 1859-1860.	1.1	1
189	Impact of wound healing problems and P. aeruginosa on burn patients. Burns, 2009, 35, S5.	1.1	0
190	Reply: Topical Silicone Gel versus Placebo in Promoting the Maturation of Burn Scars: A Randomized Controlled Trial—The Pivotal Role of Statistics. Plastic and Reconstructive Surgery, 2011, 128, 607.	0.7	0
191	Dermal substitution in burns: Invited commentary on "The roles of topical negative pressure in deep burn wounds treated by dermal substitution― Wound Repair and Regeneration, 2013, 21, 905-906.	1.5	0
192	Cost-Effectiveness of Laser Doppler Imaging in Burn Care in The Netherlands; A Randomised Controlled Trial. Value in Health, 2014, 17, A608.	0.1	0
193	Response to Letter to the Editor "Facial scar assessment: What do we need in future?― Burns, 2014, 40, 536-537.	1.1	0
194	Autologous fat grafting; it almost seems too good to be true. Burns, 2017, 43, 690-691.	1.1	0
195	Reply: Effectiveness of Autologous Fat Grafting in Adherent Scars: Results Obtained by a Comprehensive Scar Evaluation Protocol. Plastic and Reconstructive Surgery, 2017, 139, 1217e-1218e.	0.7	0
196	Twelve-Year Follow-Up: A Clinical Study on Dermal Regeneration. , 2020, , 183-193.		0
197	Scar Assessment. , 2020, , 51-67.		О