List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1840866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phytochrome B Conveys Low Ambient Temperature Cues to the Ethylene-Mediated Leaf Senescence in <i>Arabidopsis</i> . Plant and Cell Physiology, 2022, 63, 326-339.	3.1	8
2	The two clock proteins CCA1 and LHY activate <i>VIN3</i> transcription during vernalization through the vernalization-responsive cis-element. Plant Cell, 2022, 34, 1020-1037.	6.6	24
3	SMAX1 potentiates phytochrome B-mediated hypocotyl thermomorphogenesis. Plant Cell, 2022, 34, 2671-2687.	6.6	10
4	SMAX1 Integrates Karrikin and Light Signals into GA-Mediated Hypocotyl Growth during Seedling Establishment. Plant and Cell Physiology, 2022, 63, 932-943.	3.1	5
5	EIN3-Mediated Ethylene Signaling Attenuates Auxin Response during Hypocotyl Thermomorphogenesis. Plant and Cell Physiology, 2021, 62, 708-720.	3.1	13
6	A dual mode of ethylene actions contributes to the optimization of hypocotyl growth under fluctuating temperature environments. Plant Signaling and Behavior, 2021, 16, 1926131.	2.4	2
7	A Multifaceted Action of Phytochrome B in Plant Environmental Adaptation. Frontiers in Plant Science, 2021, 12, 659712.	3.6	10
8	Safeguarding genome integrity under heat stress in plants. Journal of Experimental Botany, 2021, , .	4.8	6
9	iRegNet: an <u>i</u> ntegrative <u>Reg</u> ulatory <u>Net</u> work analysis tool for <i>Arabidopsis thaliana</i> . Plant Physiology, 2021, 187, 1292-1309.	4.8	6
10	External and Internal Reshaping of Plant Thermomorphogenesis. Trends in Plant Science, 2021, 26, 810-821.	8.8	10
11	Auxin mediates the touch-induced mechanical stimulation of adventitious root formation under windy conditions in Brachypodium distachyon. BMC Plant Biology, 2020, 20, 335.	3.6	11
12	HOS1 activates DNA repair systems to enhance plant thermotolerance. Nature Plants, 2020, 6, 1439-1446.	9.3	32
13	Synchronization of photoperiod and temperature signals during plant thermomorphogenesis. Plant Signaling and Behavior, 2020, 15, 1739842.	2.4	1
14	Plant Thermomorphogenic Adaptation to Global Warming. Journal of Plant Biology, 2020, 63, 1-9.	2.1	13
15	GIGANTEA Shapes the Photoperiodic Rhythms of Thermomorphogenic Growth in Arabidopsis. Molecular Plant, 2020, 13, 459-470.	8.3	43
16	Physicochemical modeling of the phytochrome-mediated photothermal sensing. Scientific Reports, 2019, 9, 10485.	3.3	6
17	Alternative RNA Splicing Expands the Developmental Plasticity of Flowering Transition. Frontiers in Plant Science, 2019, 10, 606.	3.6	22
18	Developmental polarity shapes thermo-induced nastic movements in plants. Plant Signaling and Behavior, 2019, 14, 1617609.	2.4	7

CHUNG-MO PARK

#	Article	IF	CITATIONS
19	Developmental Programming of Thermonastic Leaf Movement. Plant Physiology, 2019, 180, 1185-1197.	4.8	70
20	Light Primes the Thermally Induced Detoxification of Reactive Oxygen Species During Development of Thermotolerance in <i>Arabidopsis</i> . Plant and Cell Physiology, 2019, 60, 230-241.	3.1	22
21	Light priming of thermotolerance development in plants. Plant Signaling and Behavior, 2019, 14, 1554469.	2.4	18
22	Thermal adaptation and plasticity of the plant circadian clock. New Phytologist, 2019, 221, 1215-1229.	7.3	89
23	Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in <i>Arabidopsis</i> . Plant Journal, 2018, 94, 790-798.	5.7	34
24	WRKY71 Acts Antagonistically Against Salt-Delayed Flowering in Arabidopsis thaliana. Plant and Cell Physiology, 2018, 59, 414-422.	3.1	47
25	External coincidence model for hypocotyl thermomorphogenesis. Plant Signaling and Behavior, 2018, 13, e1327498.	2.4	8
26	Rootâ€expressed phytochromes <scp>B</scp> 1 and <scp>B</scp> 2, but not <scp>P</scp> hy <scp>A</scp> and <scp>C</scp> ry2, regulate shoot growth in nature. Plant, Cell and Environment, 2018, 41, 2577-2588.	5.7	12
27	Abscisic acid-mediated phytochrome B signaling promotes primary root growth in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2018, 13, e1473684.	2.4	6
28	HOS1 acts as a key modulator of hypocotyl photomorphogenesis. Plant Signaling and Behavior, 2017, 12, e1315497.	2.4	7
29	<scp>COP</scp> 1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytologist, 2017, 215, 269-280.	7.3	118
30	HOS1 Facilitates the Phytochrome B-Mediated Inhibition of PIF4 Function during Hypocotyl Growth in Arabidopsis. Molecular Plant, 2017, 10, 274-284.	8.3	31
31	Thermo-Induced Maintenance of Photo-oxidoreductases Underlies Plant Autotrophic Development. Developmental Cell, 2017, 41, 170-179.e4.	7.0	11
32	Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis. Plant Cell, 2017, 29, 2817-2830.	6.6	64
33	ZEITLUPE Contributes to a Thermoresponsive Protein Quality Control System in Arabidopsis. Plant Cell, 2017, 29, 2882-2894.	6.6	64
34	Environmental Adaptation of the Heterotrophic-to-Autotrophic Transition: The Developmental Plasticity of Seedling Establishment. Critical Reviews in Plant Sciences, 2017, 36, 128-137.	5.7	11
35	Protein quality control is essential for the circadian clock in plants. Plant Signaling and Behavior, 2017, 12, e1407019.	2.4	2
36	Multiple Routes of Light Signaling during Root Photomorphogenesis. Trends in Plant Science, 2017, 22, 803-812.	8.8	48

#	Article	IF	CITATIONS
37	Alternative splicing provides a proactive mechanism for the diurnal CONSTANS dynamics in Arabidopsis photoperiodic flowering. Plant Journal, 2017, 89, 128-140.	5.7	34
38	An FCA-mediated epigenetic route towards thermal adaptation of autotrophic development in plants. BMB Reports, 2017, 50, 343-344.	2.4	2
39	Underground roots monitor aboveground environment by sensing stem-piped light. Communicative and Integrative Biology, 2016, 9, e1261769.	1.4	14
40	High temperature attenuates the gravitropism of inflorescence stems by inducing <i><scp>SHOOT GRAVITROPISM</scp> 5</i> alternative splicing in <i><scp>A</scp>rabidopsis</i> . New Phytologist, 2016, 209, 265-279.	7.3	35
41	<scp>WRKY</scp> 71 accelerates flowering via the direct activation of <i><scp>FLOWERING LOCUS</scp> T</i> and <i><scp>LEAFY</scp></i> in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 85, 96-106.	5.7	113
42	LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis. BMC Plant Biology, 2016, 16, 114.	3.6	55
43	Stem-piped light activates phytochrome B to trigger light responses in <i>Arabidopsis thaliana</i> roots. Science Signaling, 2016, 9, ra106.	3.6	145
44	SPL3/4/5 Integrate Developmental Aging andÂPhotoperiodic Signals into the FT-FD Module in Arabidopsis Flowering. Molecular Plant, 2016, 9, 1647-1659.	8.3	125
45	INDUCER OF CBF EXPRESSIONÂ1 integrates cold signals into FLOWERING LOCUS Câ€mediated flowering pathways in Arabidopsis. Plant Journal, 2015, 84, 29-40.	5.7	54
46	AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis. BMC Plant Biology, 2015, 15, 110.	3.6	76
47	Systemic Immunity Requires SnRK2.8-Mediated Nuclear Import of NPR1 in Arabidopsis. Plant Cell, 2015, 27, 3425-3438.	6.6	104
48	Adaptive thermal control of stem gravitropism through alternative RNA splicing in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2015, 10, e1093715.	2.4	4
49	Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis. Plant Signaling and Behavior, 2015, 10, e1089373.	2.4	8
50	The unified ICE–CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Molecular Biology, 2015, 89, 187-201.	3.9	133
51	The <i><scp>A</scp>rabidopsis thaliana </i> <scp>RNA</scp> â€binding protein <scp>FCA</scp> regulates thermotolerance by modulating the detoxification of reactive oxygen species. New Phytologist, 2015, 205, 555-569.	7.3	36
52	The Arabidopsis Floral Repressor BFT Delays Flowering by Competing with FT for FD Binding under High Salinity. Molecular Plant, 2014, 7, 377-387.	8.3	79
53	Molecular and functional characterization of cold-responsive C-repeat binding factors from Brachypodium distachyon. BMC Plant Biology, 2014, 14, 15.	3.6	48
54	FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nature Communications, 2014, 5, 5473.	12.8	87

#	Article	IF	CITATIONS
55	The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions. Plant Science, 2014, 227, 76-83.	3.6	65
56	Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis. BMC Plant Biology, 2014, 14, 136.	3.6	123
57	The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning. Plant Science, 2014, 215-216, 29-38.	3.6	99
58	Beyond ubiquitination: proteolytic and nonproteolytic roles of HOS1. Trends in Plant Science, 2014, 19, 538-545.	8.8	19
59	Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions. Planta, 2013, 237, 1415-1424.	3.2	81
60	A Competitive Peptide Inhibitor KIDARI Negatively Regulates HFR1 by Forming Nonfunctional Heterodimers in Arabidopsis Photomorphogenesis. Molecules and Cells, 2013, 35, 25-31.	2.6	33
61	Controlled turnover of CONSTANS protein by the HOS1 E3 ligase regulates floral transition at low temperatures. Plant Signaling and Behavior, 2013, 8, e23780.	2.4	10
62	HOS1-mediated activation of <i>FLC</i> via chromatin remodeling under cold stress. Plant Signaling and Behavior, 2013, 8, e27342.	2.4	15
63	The Cold Signaling Attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 Activates <i>FLOWERING LOCUS C</i> Transcription via Chromatin Remodeling under Short-Term Cold Stress in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 4378-4390.	6.6	106
64	<i>CCA1</i> alternative splicing as a way of linking the circadian clock to temperature response in Arabidopsis. Plant Signaling and Behavior, 2012, 7, 1194-1196.	2.4	47
65	Regulation of reactive oxygen species generation under drought conditions in Arabidopsis. Plant Signaling and Behavior, 2012, 7, 599-601.	2.4	29
66	The E3 Ubiquitin Ligase HOS1 Regulates Arabidopsis Flowering by Mediating CONSTANS Degradation Under Cold Stress. Journal of Biological Chemistry, 2012, 287, 43277-43287.	3.4	90
67	A Self-Regulatory Circuit of CIRCADIAN CLOCK-ASSOCIATED1 Underlies the Circadian Clock Regulation of Temperature Responses in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2427-2442.	6.6	249
68	The AT-hook Motif-containing Protein AHL22 Regulates Flowering Initiation by Modifying FLOWERING LOCUS T Chromatin in Arabidopsis. Journal of Biological Chemistry, 2012, 287, 15307-15316.	3.4	108
69	Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8Âin the drought-stress response. Biochemical Journal, 2012, 448, 353-363.	3.7	103
70	Arabidopsis RNA-binding Protein FCA Regulates MicroRNA172 Processing in Thermosensory Flowering. Journal of Biological Chemistry, 2012, 287, 16007-16016.	3.4	78
71	SHORT VEGETATIVE PHASE (SVP) protein negatively regulates miR172 transcription via direct binding to the priâ€miR172a promoter in <i>Arabidopsis</i> . FEBS Letters, 2012, 586, 2332-2337.	2.8	63
72	Preparation of leaf mesophyll protoplasts for transient gene expression in Brachypodium distachyon. Journal of Plant Biology, 2012, 55, 390-397.	2.1	38

#	Article	IF	CITATIONS
73	Targeted inactivation of transcription factors by overexpression of their truncated forms in plants. Plant Journal, 2012, 72, 162-172.	5.7	25
74	Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta, 2012, 235, 923-938.	3.2	117
75	The SOC1â€SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant Journal, 2012, 69, 577-588.	5.7	225
76	A NAC transcription factor NTL4 promotes reactive oxygen species production during droughtâ€induced leaf senescence in Arabidopsis. Plant Journal, 2012, 70, 831-844.	5.7	360
77	Two splice variants of the IDD14 transcription factor competitively form nonfunctional heterodimers which may regulate starch metabolism. Nature Communications, 2011, 2, 303.	12.8	132
78	A Highly Selective and Sensitive Fluorescence Sensing System for Distinction between Diphosphate and Nucleoside Triphosphates. Journal of Organic Chemistry, 2011, 76, 417-423.	3.2	53
79	Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signaling and Behavior, 2011, 6, 1198-1200.	2.4	71
80	Competitive inhibition of transcription factors by small interfering peptides. Trends in Plant Science, 2011, 16, 541-549.	8.8	100
81	The MYB96 Transcription Factor Regulates Cuticular Wax Biosynthesis under Drought Conditions in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 1138-1152.	6.6	522
82	Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in <i>Arabidopsis</i> . Plant Journal, 2011, 65, 418-429.	5.7	137
83	Expression of Arabidopsis pathogenesisâ€related genes during nematode infection. Molecular Plant Pathology, 2011, 12, 355-364.	4.2	150
84	Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis Â. Plant Physiology, 2011, 156, 537-549.	4.8	162
85	The <i>Arabidopsis</i> NAC Transcription Factor VNI2 Integrates Abscisic Acid Signals into Leaf Senescence via the <i>COR</i> / <i>RD</i> Genes. Plant Cell, 2011, 23, 2155-2168.	6.6	366
86	miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Molecular Biology, 2011, 76, 35-45.	3.9	177
87	An Arabidopsis senescence-associated protein SAC29 regulates cell viability under high salinity. Planta, 2011, 233, 189-200.	3.2	170
88	Activation of a Mitochondrial ATPase Gene Induces Abnormal Seed Development in Arabidopsis. Molecules and Cells, 2011, 31, 361-370.	2.6	20
89	The Floral Repressor BROTHER OF FT AND TFL1 (BFT) Modulates Flowering Initiation under High Salinity in Arabidopsis. Molecules and Cells, 2011, 32, 295-304.	2.6	72
90	Signaling linkage between environmental stress resistance and leaf senescence in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2011, 6, 1564-1566.	2.4	16

#	Article	IF	CITATIONS
91	Cuticular wax biosynthesis as a way of inducing drought resistance. Plant Signaling and Behavior, 2011, 6, 1043-1045.	2.4	82
92	Nuclear Import and DNA Binding of the ZHD5 Transcription Factor Is Modulated by a Competitive Peptide Inhibitor in Arabidopsis. Journal of Biological Chemistry, 2011, 286, 1659-1668.	3.4	69
93	Brachypodium as a Model for the Grasses: Today and the Future Â. Plant Physiology, 2011, 157, 3-13.	4.8	243
94	Proteolytic processing of an <i>Arabidopsis</i> membrane-bound NAC transcription factor is triggered by cold-induced changes in membrane fluidity. Biochemical Journal, 2010, 427, 359-367.	3.7	63
95	A Transcriptional Feedback Loop Modulating Signaling Crosstalks between Auxin and Brassinosteroid in Arabidopsis. Molecules and Cells, 2010, 29, 449-456.	2.6	18
96	An Arabidopsis F-box protein regulates tapetum degeneration and pollen maturation during anther development. Planta, 2010, 232, 353-366.	3.2	30
97	Identification and molecular characterization of a Brachypodium distachyon GIGANTEA gene: functional conservation in monocot and dicot plants. Plant Molecular Biology, 2010, 72, 485-497.	3.9	35
98	Activation tagging of an Arabidopsis SHI-RELATED SEQUENCE gene produces abnormal anther dehiscence and floral development. Plant Molecular Biology, 2010, 74, 337-351.	3.9	36
99	MYB96â€mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in <i>Arabidopsis</i> . New Phytologist, 2010, 186, 471-483.	7.3	293
100	Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 2010, 188, 626-637.	7.3	189
101	Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant Journal, 2010, 61, 661-671.	5.7	253
102	<i>Helicobacter pylori</i> proinflammatory protein up-regulates NF-κB as a cell-translocating Ser/Thr kinase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21418-21423.	7.1	49
103	A membrane-bound NAC transcription factor as an integrator of biotic and abiotic stress signals. Plant Signaling and Behavior, 2010, 5, 481-483.	2.4	60
104	Modulation of reactive oxygen species by salicylic acid in Arabidopsis seed germination under high salinity. Plant Signaling and Behavior, 2010, 5, 1534-1536.	2.4	49
105	Probing protein structural requirements for activation of membrane-bound NAC transcription factors in Arabidopsis and rice. Plant Science, 2010, 178, 239-244.	3.6	18
106	Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice. Genomics, 2010, 95, 56-65.	2.9	112
107	MicroRNA biogenesis and function in higher plants. Plant Biotechnology Reports, 2009, 3, 111-126.	1.5	49
108	Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Reports, 2009, 28, 1159-1167.	5.6	95

CHUNG-MO PARK

#	Article	IF	CITATIONS
109	Crystal structure of a cyanobacterial phytochrome response regulator. Protein Science, 2009, 11, 614-624.	7.6	20
110	The MYB96 Transcription Factor Mediates Abscisic Acid Signaling during Drought Stress Response in Arabidopsis. Plant Physiology, 2009, 151, 275-289.	4.8	510
111	Auxin homeostasis during lateral root development under drought condition. Plant Signaling and Behavior, 2009, 4, 1002-1004.	2.4	71
112	A membraneâ€bound NAC transcription factor NTL8 regulates gibberellic acidâ€mediated salt signaling in Arabidopsis seed germination. Plant Journal, 2008, 55, 77-88.	5.7	189
113	Exploring valid reference genes for gene expression studies in Brachypodium distachyonby real-time PCR. BMC Plant Biology, 2008, 8, 112.	3.6	377
114	Membrane-bound transcription factors in plants. Trends in Plant Science, 2008, 13, 550-556.	8.8	199
115	Molecular Mechanisms Underlying Vascular Development. Advances in Botanical Research, 2008, , 1-68.	1.1	6
116	Gibberellic acid-mediated salt signaling in seed germination. Plant Signaling and Behavior, 2008, 3, 877-879.	2.4	30
117	Small interfering peptides as a novel way of transcriptional control. Plant Signaling and Behavior, 2008, 3, 615-617.	2.4	14
118	Molecular and Functional Profiling of Arabidopsis Pathogenesis-Related Genes: Insights into Their Roles in Salt Response of Seed Germination. Plant and Cell Physiology, 2008, 49, 334-344.	3.1	197
119	HD-ZIP III Activity Is Modulated by Competitive Inhibitors via a Feedback Loop in <i>Arabidopsis</i> Shoot Apical Meristem Development. Plant Cell, 2008, 20, 920-933.	6.6	127
120	Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis. Molecules and Cells, 2008, 25, 438-45.	2.6	86
121	Exploring membrane-associated NAC transcription factors in Arabidopsis : implications for membrane biology in genome regulation. Nucleic Acids Research, 2007, 35, 203-213.	14.5	214
122	Auxin Homeostasis in Plant Stress Adaptation Response. Plant Signaling and Behavior, 2007, 2, 306-307.	2.4	30
123	Membrane-Mediated Salt Stress Signaling in Flowering Time Control. Plant Signaling and Behavior, 2007, 2, 517-518.	2.4	16
124	Membrane Regulation of Cytokinin-Mediated Cell Division inArabidopsis. Plant Signaling and Behavior, 2007, 2, 15-16.	2.4	7
125	The <i>GIGANTEA</i> -Regulated MicroRNA172 Mediates Photoperiodic Flowering Independent of <i>CONSTANS</i> in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 2736-2748.	6.6	438
126	GH3-mediated Auxin Homeostasis Links Growth Regulation with Stress Adaptation Response in Arabidopsis. Journal of Biological Chemistry, 2007, 282, 10036-10046.	3.4	423

CHUNG-MO PARK

#	Article	IF	CITATIONS
127	An Arabidopsis GH3 Gene, Encoding an Auxin-Conjugating Enzyme, Mediates Phytochrome B-Regulated Light Signals in Hypocotyl Growth. Plant and Cell Physiology, 2007, 48, 1514-1514.	3.1	3
128	Functional characterization of a small auxin-up RNA gene in apical hook development in Arabidopsis. Plant Science, 2007, 172, 150-157.	3.6	79
129	Structural and Functional Insights into Dom34, a Key Component of No-Go mRNA Decay. Molecular Cell, 2007, 27, 938-950.	9.7	84
130	An Arabidopsis GH3 Gene, Encoding an Auxin-Conjugating Enzyme, Mediates Phytochrome B-Regulated Light Signals in Hypocotyl Growth. Plant and Cell Physiology, 2007, 48, 1236-1241.	3.1	59
131	MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta, 2007, 225, 1327-1338.	3.2	179
132	A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta, 2007, 226, 647-654.	3.2	214
133	S2c1-1 Structure and Ribonuclease Activity of Pelota : Implications for the No-go Decay and Translation Regulation(S2-c1: "Crystallographic approach to understand biological) Tj ETQq1 1 0.784314 rgBT /Or Seibutsu Butsuri 2006 46 S120	verlock 10 0.1) Tf 50 502 T
134	A Membrane-Bound NAC Transcription Factor Regulates Cell Division in Arabidopsis. Plant Cell, 2006, 18, 3132-3144.	6.6	344
135	microRNAâ€directed cleavage of <i>ATHB15</i> mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant Journal, 2005, 42, 84-94.	5.7	334
136	A New Arabidopsis Gene,FLK, Encodes an RNA Binding Protein with K Homology Motifs and Regulates Flowering Time viaFLOWERING LOCUS CÂ[W]. Plant Cell, 2004, 16, 731-740.	6.6	211
137	A Phytochrome-Associated Protein Phosphatase 2A Modulates Light Signals in Flowering Time Control in Arabidopsis. Plant Cell, 2002, 14, 3043-3056.	6.6	137
138	The H1 double-stranded RNA genome of Ustilago maydis virus-H1 encodes a polyprotein that contains structural motifs for capsid polypeptide, papain-like protease, and RNA-dependent RNA polymerase. Virus Research, 2001, 76, 183-189.	2.2	32
139	Light and Brassinosteroid Signals Are Integrated via a Dark-Induced Small G Protein in Etiolated Seedling Growth. Cell, 2001, 105, 625-636.	28.9	172
140	Inter-domain crosstalk in the phytochrome molecules. Seminars in Cell and Developmental Biology, 2000, 11, 449-456.	5.0	50
141	Structure of Ustilago maydis Killer Toxin KP6 α-Subunit. Journal of Biological Chemistry, 1999, 274, 20425-20431.	3.4	29
142	High-level secretion of a virally encoded anti-fungal toxin in transgenic tobacco plants. Plant Molecular Biology, 1996, 30, 359-366.	3.9	34
143	The Ustilago maydis virally encoded KP1 killer toxin. Molecular Microbiology, 1996, 20, 957-963.	2.5	39
144	Structure and heterologous expression of the Ustilago maydis viral toxin KP4. Molecular Microbiology, 1994, 11, 155-164.	2.5	59

#	Article	IF	CITATIONS
145	A family of Ustilago maydis expression vectors: new selectable markers and promoters. Gene, 1993, 127, 151-152.	2.2	18