
Zakaria Anfar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1840310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High thiabendazole fungicide uptake using Cellana tramoserica shells modified by copper: characterization, adsorption mechanism, and optimization using CCD-RSM approach. Environmental Science and Pollution Research, 2022, 29, 86020-86035.	2.7	10
2	Conjugated polymers templated carbonization to design N, S co-doped finely tunable carbon for enhanced synergistic catalysis. Applied Catalysis B: Environmental, 2022, 300, 120732.	10.8	29
3	Engineering of Hâ€Bonding Interactions in PVA/gâ€C ₃ N ₄ Hybrids for Enhanced Structural, Thermal, and Mechanical Properties: Toward Waterâ€Responsive Shape Memory Nanocomposites. Advanced Materials Interfaces, 2022, 9, .	1.9	10
4	New insights into N, S doped carbon from conjugated polymers for efficient persulfate activation: Role of hydrogel beads in enhancement of stability. Chemical Engineering Journal, 2022, 442, 136055.	6.6	11
5	Removal of reactive red-198 dye using chitosan as an adsorbent: optimization by Central composite design coupled with response surface methodology. Toxin Reviews, 2021, 40, 225-237.	1.5	22
6	New functionalization approach synthesis of Sulfur doped, Nitrogen doped and Co-doped porous carbon: Superior metal-free Carbocatalyst for the catalytic oxidation of aqueous organics pollutants. Chemical Engineering Journal, 2021, 405, 126660.	6.6	47
7	Synergistic effect of g-C3N4 nanosheets/Ag3PO4 microcubes as efficient n-p-type heterostructure based photoanode for photoelectrocatalytic dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 409, 113127.	2.0	29
8	Engineering of amine-based binding chemistry on functionalized graphene oxide/alginate hybrids for simultaneous and efficient removal of trace heavy metals: Towards drinking water. Journal of Colloid and Interface Science, 2021, 589, 511-524.	5.0	41
9	Engineering of new hydrogel beads based conducting polymers: Metal-free catalysis for highly organic pollutants degradation. Applied Catalysis B: Environmental, 2021, 286, 119948.	10.8	56
10	MoS2 nanosheets/silver nanoparticles anchored onto textile fabric as "dip catalyst―for synergistic p-nitrophenol hydrogenation. Environmental Science and Pollution Research, 2021, 28, 64674-64686.	2.7	13
11	Synergistic effect for efficient catalytic persulfate activation in conducting polymers-hematite sand composites: Enhancement of chemical stability. Applied Catalysis A: General, 2021, 623, 118246.	2.2	16
12	Self-Supporting g-C3N4 Nanosheets/Ag Nanoparticles Embedded onto Polyester Fabric as "Dip-Catalyst― for Synergic 4-Nitrophenol Hydrogenation. Catalysts, 2021, 11, 1533.	1.6	7
13	Methanisation: A promising green technology to manage organic wastes in the Moroccan dairy industry. Materials Today: Proceedings, 2020, 22, 57-60.	0.9	1
14	Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: A review. Critical Reviews in Environmental Science and Technology, 2020, 50, 1043-1084.	6.6	109
15	Ultrasound-assisted electro-oxidation of Methylene blue dye using new Zn3(PO4)2 based electrode prepared by electro-deposition. Materials Today: Proceedings, 2020, 22, 32-34.	0.9	12
16	Barium Hydrogen Phosphate Electrodes for High Electrocatalytic and Photoelectrocatalytic Degradation of Rhodamine B in Neutral Medium: Optimization by Response Surface Methodology. Electrocatalysis, 2020, 11, 642-654.	1.5	15
17	Emerging Chemical Functionalization of g-C ₃ N ₄ : Covalent/Noncovalent Modifications and Applications. ACS Nano, 2020, 14, 12390-12469.	7.3	258
18	New amino group functionalized porous carbon for strong chelation ability towards toxic heavy metals. RSC Advances, 2020, 10, 31087-31100.	1.7	20

ZAKARIA ANFAR

#	Article	IF	CITATIONS
19	Nitrogen doped graphitic porous carbon from almond shells as an efficient persulfate activator for organic compound degradation. New Journal of Chemistry, 2020, 44, 9391-9401.	1.4	17
20	Core-shell particles based on porous carbon@Fe3O4 for efficient removal of dyes from textile effluents. IOP Conference Series: Materials Science and Engineering, 2020, 827, 012006.	0.3	2
21	Microwave assisted green synthesis of Fe ₂ O ₃ /biochar for ultrasonic removal of nonsteroidal anti-inflammatory pharmaceuticals. RSC Advances, 2020, 10, 11371-11380.	1.7	37
22	Synthesis and Characterization of Chitosan/Fluorapatite Composites for the Removal of Cr (VI) from Aqueous Solutions and Optimized Parameters. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	11
23	Core–shell architecture based on bio-sourced porous carbon: the shape formation mechanism at the solid/liquid interface layer. RSC Advances, 2019, 9, 25544-25553.	1.7	4
24	High extent mass recovery of alginate hydrogel beads network based on immobilized bio-sourced porous carbon@Fe3O4-NPs for organic pollutants uptake. Chemosphere, 2019, 236, 124351.	4.2	43
25	Cover Image, Volume 94, Issue 8. Journal of Chemical Technology and Biotechnology, 2019, 94, i.	1.6	Ο
26	Kinetics, equilibrium, statistical surface modeling and cost analysis of paraquat removal from aqueous solution using carbonated jujube seed. RSC Advances, 2019, 9, 1084-1094.	1.7	43
27	Combined Methane Energy Recovery and Toxic Dye Removal by Porous Carbon Derived from Anaerobically Modified Digestate. ACS Omega, 2019, 4, 9434-9445.	1.6	31
28	Polyaniline coated hematite sand supported on graphene oxide (HS@PANIâ€GO) as a new magnetic material for advanced catalytic oxidation based on sulfate radicals: optimization using response surface methodology. Journal of Chemical Technology and Biotechnology, 2019, 94, 2609-2620.	1.6	11
29	Carbon microspheres derived from walnut shell: Rapid and remarkable uptake of heavy metal ions, molecular computational study and surface modeling. Chemosphere, 2019, 231, 140-150.	4.2	42
30	Preparation and Characterization of Porous Carbon@ZnOâ€NPs for Organic Compounds Removal: Classical Adsorption Versus Ultrasound Assisted Adsorption. ChemistrySelect, 2019, 4, 4981-4994.	0.7	30
31	Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. RSC Advances, 2019, 9, 9792-9808.	1.7	48
32	Electrosynthesis of zinc phosphate-polypyrrole coatings for improved corrosion resistance of steel. Surfaces and Interfaces, 2019, 15, 224-231.	1.5	34
33	Reusable bentonite clay: modelling and optimization of hazardous lead and <i>p</i> -nitrophenol adsorption using a response surface methodology approach. RSC Advances, 2019, 9, 5756-5769.	1.7	35
34	Synthesis of sustainable mesoporous treated fish waste as adsorbent for copper removal. Groundwater for Sustainable Development, 2019, 8, 1-9.	2.3	22
35	Hematite–titaniferous sand as a new low-cost adsorbent for orthophosphates removal: Adsorption, mechanism and Process Capability study. Environmental Technology and Innovation, 2019, 13, 153-165.	3.0	16
36	Cationic dyes adsorption onto high surface area â€~almond shell' activated carbon: Kinetics, equilibrium isotherms and surface statistical modeling. Materials Today Chemistry, 2018, 8, 121-132.	1.7	141

ZAKARIA ANFAR

#	Article	IF	CITATIONS
37	Well-designed WO ₃ /Activated carbon composite for Rhodamine B Removal: Synthesis, characterization, and modeling using response surface methodology. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 389-397.	1.0	53
38	Acridine orange adsorption by zinc oxide/almond shell activated carbon composite: Operational factors, mechanism and performance optimization using central composite design and surface modeling. Journal of Environmental Management, 2018, 206, 383-397.	3.8	115
39	Adsorptive Removal of Methylene Blue and Crystal Violet onto Micro-Mesoporous Zr ₃ O/Activated Carbon Composite: A Joint Experimental and Statistical Modeling Considerations. Journal of Chemistry, 2018, 2018, 1-14.	0.9	36
40	Apatitic tricalcium phosphate powder: High sorption capacity of hexavalent chromium removal. Surfaces and Interfaces, 2018, 13, 139-147.	1.5	31
41	Photo/Electrocatalytic Properties of Nanocrystalline ZnO and La–Doped ZnO: Combined DFT Fundamental Semiconducting Properties and Experimental Study. ChemistrySelect, 2018, 3, 7778-7791.	0.7	34
42	Removal of heavy metals and organic pollutants by a sand rich in iron oxide. Euro-Mediterranean Journal for Environmental Integration, 2018, 3, 1.	0.6	20
43	Factorial experimental design to enhance methane production of dairy wastes co-digestion. Sustainable Environment Research, 2018, 28, 389-395.	2.1	11
44	Porous carbon by microwave assisted pyrolysis: An effective and low-cost adsorbent for sulfamethoxazole adsorption and optimization using response surface methodology. Journal of Cleaner Production, 2018, 202, 571-581.	4.6	108
45	Adsorption kinetics and surface modeling of aqueous methylene blue onto activated carbonaceous wood sawdust. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 433-442.	1.0	42
46	Treated digested residue during anaerobic co-digestion of Agri-food organic waste: Methylene blue adsorption, mechanism and CCD-RSM design. Journal of Environmental Chemical Engineering, 2017, 5, 5857-5867.	3.3	63