
Kei Sakamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1839783/publications.pdf Version: 2024-02-01

KEI SAKAMOTO

#	Article	IF	CITATIONS
1	Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. Journal of Clinical Investigation, 2010, 120, 2355-2369.	8.2	1,001
2	LKB1-Dependent Signaling Pathways. Annual Review of Biochemistry, 2006, 75, 137-163.	11.1	707
3	The Ancient Drug Salicylate Directly Activates AMP-Activated Protein Kinase. Science, 2012, 336, 918-922.	12.6	649
4	Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO Journal, 2005, 24, 1571-1583.	7.8	534
5	Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circulation Research, 2016, 119, 652-665.	4.5	498
6	Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO Journal, 2005, 24, 1810-1820.	7.8	478
7	AMPK: A Key Sensor of Fuel and Energy Status in Skeletal Muscle. Physiology, 2006, 21, 48-60.	3.1	434
8	Mechanism of Action of A-769662, a Valuable Tool for Activation of AMP-activated Protein Kinase. Journal of Biological Chemistry, 2007, 282, 32549-32560.	3.4	376
9	Molecular mechanism of action of metformin: old or new insights?. Diabetologia, 2013, 56, 1898-1906.	6.3	376
10	AMPKα1 Regulates Macrophage Skewing at the Time of Resolution of Inflammation during Skeletal Muscle Regeneration. Cell Metabolism, 2013, 18, 251-264.	16.2	375
11	Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E29-E37.	3.5	366
12	Important role of the LKB1–AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochemical Journal, 2008, 412, 211-221.	3.7	358
13	Aspirin Inhibits mTOR Signaling, Activates AMP-Activated Protein Kinase, and Induces Autophagy in Colorectal Cancer Cells. Gastroenterology, 2012, 142, 1504-1515.e3.	1.3	356
14	Distinct Signals Regulate AS160 Phosphorylation in Response to Insulin, AICAR, and Contraction in Mouse Skeletal Muscle. Diabetes, 2006, 55, 2067-2076.	0.6	285
15	Effect of Acute Exercise on AMPK Signaling in Skeletal Muscle of Subjects With Type 2 Diabetes: A Time-Course and Dose-Response Study. Diabetes, 2007, 56, 836-848.	0.6	281
16	Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E310-E317.	3.5	273
17	Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function. Cell Metabolism, 2016, 24, 118-129.	16.2	259
18	Chemical Genetic Screen for AMPKα2 Substrates Uncovers a Network of Proteins Involved in Mitosis. Molecular Cell, 2011, 44, 878-892.	9.7	232

#	Article	IF	CITATIONS
19	How long does the protective effect on eccentric exercise-induced muscle damage last?. Medicine and Science in Sports and Exercise, 2001, 33, 1490-1495.	0.4	221
20	Invited Review: Intracellular signaling in contracting skeletal muscle. Journal of Applied Physiology, 2002, 93, 369-383.	2.5	221
21	Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nature Medicine, 2018, 24, 1395-1406.	30.7	212
22	Differential effects of palmitate and palmitoleate on insulin action and glucose utilization in rat L6 skeletal muscle cells. Biochemical Journal, 2006, 399, 473-481.	3.7	199
23	Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKα2 but not AMPKα1. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E780-E788.	3.5	193
24	Reduced expression of the murine p85α subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. Journal of Clinical Investigation, 2002, 109, 141-149.	8.2	183
25	AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nature Communications, 2018, 9, 374.	12.8	179
26	Allosteric Regulation of Glycogen Synthase Controls Glycogen Synthesis in Muscle. Cell Metabolism, 2010, 12, 456-466.	16.2	169
27	Akt signaling in skeletal muscle: regulation by exercise and passive stretch. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E1081-E1088.	3.5	168
28	Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochemical Journal, 2011, 436, 169-179.	3.7	162
29	Contraction Regulation of Akt in Rat Skeletal Muscle. Journal of Biological Chemistry, 2002, 277, 11910-11917.	3.4	160
30	Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways. Journal of Cell Science, 2011, 124, 789-800.	2.0	150
31	A small molecule AMPK activator protects the heart against ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2011, 51, 24-32.	1.9	149
32	Mice with AS160/TBC1D4-Thr649Ala Knockin Mutation Are Glucose Intolerant with Reduced Insulin Sensitivity and Altered GLUT4 Trafficking. Cell Metabolism, 2011, 13, 68-79.	16.2	147
33	Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate. Cellular Signalling, 2015, 27, 978-988.	3.6	143
34	Effect of elbow joint angle on the magnitude of muscle damage to the elbow flexors. Medicine and Science in Sports and Exercise, 2001, 33, 22-29.	0.4	142
35	The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nature Communications, 2014, 5, 4535.	12.8	131
36	Molecular Mechanism by Which AMP-Activated Protein Kinase Activation Promotes Glycogen Accumulation in Muscle. Diabetes, 2011, 60, 766-774.	0.6	129

#	Article	IF	CITATIONS
37	The repeated bout effect of reduced-load eccentric exercise on elbow flexor muscle damage. European Journal of Applied Physiology, 2001, 85, 34-40.	2.5	128
38	SIKs control osteocyte responses to parathyroid hormone. Nature Communications, 2016, 7, 13176.	12.8	124
39	Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. Nature Cell Biology, 2018, 20, 811-822.	10.3	124
40	Dual Regulation of Glycogen Synthase Kinase 3 (GSK3)α/β by Protein Kinase C (PKC)α and Akt Promotes Thrombin-mediated Integrin αIIbβ3 Activation and Granule Secretion in Platelets. Journal of Biological Chemistry, 2013, 288, 3918-3928.	3.4	123
41	AMP-activated protein kinase mediates preconditioning in cardiomyocytes by regulating activity and trafficking of sarcolemmal ATP-sensitive K+ channels. Journal of Cellular Physiology, 2007, 210, 224-236.	4.1	122
42	Mediumâ€chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyteâ€neuron lactate and ketone body shuttle systems. FASEB Journal, 2016, 30, 1913-1926.	0.5	119
43	Mutation of the PDK1 PH Domain Inhibits Protein Kinase B/Akt, Leading to Small Size and Insulin Resistance. Molecular and Cellular Biology, 2008, 28, 3258-3272.	2.3	115
44	Metformin selectively targets redox control of complex I energy transduction. Redox Biology, 2018, 14, 187-197.	9.0	115
45	Effect of AICAR Treatment on Glycogen Metabolism in Skeletal Muscle. Diabetes, 2002, 51, 567-573.	0.6	106
46	Important role for AMPKαl in limiting skeletal muscle cell hypertrophy. FASEB Journal, 2009, 23, 2264-2273.	0.5	106
47	Mechanism of Action of Compound-13: An α1-Selective Small Molecule Activator of AMPK. Chemistry and Biology, 2014, 21, 866-879.	6.0	103
48	AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase. Biochemical Journal, 2012, 443, 193-203.	3.7	98
49	The Muscle-specific Protein Phosphatase PP1G/RGL(GM) Is Essential for Activation of Glycogen Synthase by Exercise. Journal of Biological Chemistry, 2001, 276, 39959-39967.	3.4	97
50	Use of Akt Inhibitor and a Drug-resistant Mutant Validates a Critical Role for Protein Kinase B/Akt in the Insulin-dependent Regulation of Glucose and System A Amino Acid Uptake. Journal of Biological Chemistry, 2008, 283, 27653-27667.	3.4	96
51	<scp>AMPK</scp> α1â€ <scp>LDH</scp> pathway regulates muscle stem cell selfâ€renewal by controlling metabolic homeostasis. EMBO Journal, 2017, 36, 1946-1962.	7.8	95
52	Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle. Biochemical and Biophysical Research Communications, 2004, 319, 419-425.	2.1	94
53	AMP-activated protein kinase activates transcription of the UCP3 and HKII genes in rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E1239-E1248.	3.5	89
54	Insulin promotes glycogen synthesis in the absence of GSK3 phosphorylation in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E28-E35.	3.5	87

#	Article	IF	CITATIONS
55	Cellular Responses to the Metal-Binding Properties of Metformin. Diabetes, 2012, 61, 1423-1433.	0.6	85
56	GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochemical Journal, 2017, 474, 983-1001.	3.7	84
57	Static stretch increases c-Jun NH ₂ -terminal kinase activity and p38 phosphorylation in rat skeletal muscle. American Journal of Physiology - Cell Physiology, 2001, 280, C352-C358.	4.6	82
58	Beyond AICA riboside: In search of new specific AMPâ€activated protein kinase activators. IUBMB Life, 2009, 61, 18-26.	3.4	81
59	Role of the PDK1-PKB-GSK3 pathway in regulating glycogen synthase and glucose uptake in the heart. FEBS Letters, 2005, 579, 3632-3638.	2.8	80
60	Glucose-6-Phosphate–Mediated Activation of Liver Glycogen Synthase Plays a Key Role in Hepatic Glycogen Synthesis. Diabetes, 2013, 62, 4070-4082.	0.6	78
61	Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E688-E696.	3.5	75
62	A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis. Biochemical Journal, 2008, 416, 1-14.	3.7	74
63	AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues. Biochemical Journal, 2013, 449, 479-489.	3.7	71
64	Salt-inducible kinase 2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes. Journal of Cell Science, 2015, 128, 472-86.	2.0	71
65	Counter-modulation of fatty acid-induced pro-inflammatory nuclear factor κB signalling in rat skeletal muscle cells by AMP-activated protein kinase. Biochemical Journal, 2011, 435, 463-474.	3.7	69
66	Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding. Nature Communications, 2016, 7, 10912.	12.8	69
67	Regulation of AMPâ€activated protein kinase by LKB1 and CaMKK in adipocytes. Journal of Cellular Biochemistry, 2011, 112, 1364-1375.	2.6	68
68	The Salt-Inducible Kinases: Emerging Metabolic Regulators. Trends in Endocrinology and Metabolism, 2018, 29, 827-840.	7.1	67
69	LKB1 Regulates Lipid Oxidation During Exercise Independently of AMPK. Diabetes, 2013, 62, 1490-1499.	0.6	66
70	The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs. Nature Communications, 2017, 8, 571.	12.8	65
71	A Noncanonical, GSK3-Independent Pathway Controls Postprandial Hepatic Glycogen Deposition. Cell Metabolism, 2013, 18, 99-105.	16.2	63
72	Mutation in the γ2-Subunit of AMP-Activated Protein Kinase Stimulates Cardiomyocyte Proliferation and Hypertrophy Independent of Glycogen Storage. Circulation Research, 2014, 114, 966-975.	4.5	63

#	Article	IF	CITATIONS
73	5??? Adenosine Monophosphate-Activated Protein Kinase, Metabolism and Exercise. Sports Medicine, 2004, 34, 91-103.	6.5	62
74	Insulin Signaling After Exercise in Insulin Receptor Substrate-2-Deficient Mice. Diabetes, 2002, 51, 479-483.	0.6	61
75	The AMPK-related kinase SIK2 is regulated by cAMP via phosphorylation at Ser358 in adipocytes. Biochemical Journal, 2012, 444, 503-514.	3.7	60
76	Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle. Molecular Metabolism, 2018, 16, 24-34.	6.5	58
77	AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR. FASEB Journal, 2019, 33, 12374-12391.	0.5	57
78	Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E1031-E1037.	3.5	55
79	Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E706-E719.	3.5	53
80	Investigation of LKB1 Ser431 phosphorylation and Cys433 farnesylation using mouse knockin analysis reveals an unexpected role of prenylation in regulating AMPK activity. Biochemical Journal, 2014, 458, 41-56.	3.7	47
81	A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1619-H1630.	3.2	46
82	Role of TAPP1 and TAPP2 adaptor binding to PtdIns(3,4) <i>P</i> 2 in regulating insulin sensitivity defined by knock-in analysis. Biochemical Journal, 2011, 434, 265-274.	3.7	45
83	Malonyl-CoA Decarboxylase Is Not a Substrate of AMP-Activated Protein Kinase in Rat Fast-Twitch Skeletal Muscle or an Islet Cell Line. Archives of Biochemistry and Biophysics, 2001, 396, 71-79.	3.0	44
84	Overexpression or ablation of JNK in skeletal muscle has no effect on glycogen synthase activity. American Journal of Physiology - Cell Physiology, 2004, 287, C200-C208.	4.6	44
85	Insulin-stimulated insulin receptor substrate-2–associated phosphatidylinositol 3–kinase activity is enhanced in human skeletal muscle after exercise. Metabolism: Clinical and Experimental, 2006, 55, 1046-1052.	3.4	43
86	Structural basis for the recruitment of glycogen synthase by glycogenin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2831-40.	7.1	43
87	Regulation of Dishevelled and β-catenin in rat skeletal muscle: an alternative exercise-induced GSK-3β signaling pathway. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E152-E158.	3.5	42
88	Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise. Mechanisms of Ageing and Development, 2012, 133, 655-664.	4.6	41
89	Disruption of the AMPK–TBC1D1 nexus increases lipogenic gene expression and causes obesity in mice via promoting ICF1 secretion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7219-7224.	7.1	41
90	The effect of exercise and insulin on AS160 phosphorylation and 14-3-3 binding capacity in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E401-E407.	3.5	39

#	Article	IF	CITATIONS
91	MiRâ€184 expression is regulated by AMPK in pancreatic islets. FASEB Journal, 2018, 32, 2587-2600.	0.5	39
92	Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells. Cardiovascular Research, 2014, 101, 20-29.	3.8	36
93	Evaluation of Approaches to Generation of Tissue-specific Knock-in Mice. Journal of Biological Chemistry, 2006, 281, 28772-28781.	3.4	34
94	AMPK promotes survival of câ€Mycâ€positive melanoma cells by suppressing oxidative stress. EMBO Journal, 2018, 37, .	7.8	34
95	The adaptive response of MyoD family proteins in overloaded, regenerating and denervated rat muscles. Biochimica Et Biophysica Acta - General Subjects, 1999, 1428, 284-292.	2.4	33
96	Resistance Exercise and Insulin Regulate AS160 and Interaction With 14-3-3 in Human Skeletal Muscle. Diabetes, 2007, 56, 1608-1614.	0.6	33
97	A Tbc1d1 Ser231Ala-knockin mutation partially impairs AICAR- but not exercise-induced muscle glucose uptake in mice. Diabetologia, 2017, 60, 336-345.	6.3	32
98	Differential adaptations of insulin-like growth factor-I, basic fibroblast growth factor, and leukemia inhibitory factor in the plantaris muscle of rats by mechanical overloading: an immunohistochemical study. Acta Neuropathologica, 1998, 95, 123-130.	7.7	31
99	Thr ⁶⁴⁹ Ala-AS160 knock-in mutation does not impair contraction/AICAR-induced glucose transport in mouse muscle. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1036-E1043.	3.5	31
100	Effect of high-intensity intermittent swimming on postexercise insulin sensitivity in rat epitrochlearis muscle. Metabolism: Clinical and Experimental, 2008, 57, 749-756.	3.4	29
101	The adaptive response of transforming growth factor-β2 and -βRII in the overloaded, regenerating and denervated muscles of rats. Acta Neuropathologica, 2000, 99, 177-185.	7.7	27
102	Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16. Biochemical Journal, 2017, 474, 699-713.	3.7	26
103	Investigation of the specificity and mechanism of action of the ULK1/AMPK inhibitor SBI-0206965. Biochemical Journal, 2021, 478, 2977-2997.	3.7	26
104	Effect of acute exercise on glycogen synthase in muscle from obese and diabetic subjects. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E82-E89.	3.5	25
105	Impaired Adaptive Response to Mechanical Overloading in Dystrophic Skeletal Muscle. PLoS ONE, 2012, 7, e35346.	2.5	25
106	AMPK-dependent activation of the Cyclin Y/CDK16 complex controls autophagy. Nature Communications, 2020, 11, 1032.	12.8	25
107	Six1 homeoprotein drives myofiber type IIA specialization in soleus muscle. Skeletal Muscle, 2016, 6, 30.	4.2	24
108	Insulin-Stimulated Glucose Uptake Does Not Require p38 Mitogen-Activated Protein Kinase in Adipose Tissue or Skeletal Muscle. Diabetes, 2005, 54, 3161-3168.	0.6	23

#	Article	IF	CITATIONS
109	Transcription factor EB and TFE3: new metabolic coordinators mediating adaptive responses to exercise in skeletal muscle?. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E763-E768.	3.5	20
110	Changes in plasma enzyme activity after intramuscular injection of bupivacaine into the human biceps brachii. Acta Physiologica Scandinavica, 1999, 167, 259-265.	2.2	18
111	Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cellular Signalling, 2019, 57, 45-57.	3.6	18
112	Loss of sarcoplasmic reticulum membrane integrity after eccentric contractions. Acta Physiologica Scandinavica, 1997, 161, 581-582.	2.2	17
113	Analysis of substrate specificity and cyclin Y binding of PCTAIRE-1 kinase. Cellular Signalling, 2012, 24, 2085-2094.	3.6	17
114	Salicylic acid: old and new implications for the treatment of type 2 diabetes?. Diabetology International, 2014, 5, 212-218.	1.4	16
115	AMPK activation by A-769662 and 991 does not affect catecholamine-induced lipolysis in human adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1075-E1085.	3.5	16
116	Molecular action and pharmacogenetics of metformin: current understanding of an old drug. Diabetes Management, 2012, 2, 439-452.	0.5	15
117	Cyclin Y phosphorylation- and 14-3-3-binding-dependent activation of PCTAIRE-1/CDK16. Biochemical Journal, 2015, 469, 409-420.	3.7	15
118	Mechanism of glycogen synthase inactivation and interaction with glycogenin. Nature Communications, 2022, 13, .	12.8	15
119	How moderate changes in Akt T-loop phosphorylation impact on tumorigenesis and insulin resistance. DMM Disease Models and Mechanisms, 2011, 4, 95-103.	2.4	14
120	Compound- and fiber type-selective requirement of AMPKγ3 for insulin-independent glucose uptake in skeletal muscle. Molecular Metabolism, 2021, 51, 101228.	6.5	14
121	Expression and purification of functional human glycogen synthase-1:glycogenin-1 complex in insect cells. Protein Expression and Purification, 2015, 108, 23-29.	1.3	12
122	Glucose-Dependent miR-125b Is a Negative Regulator of \hat{I}^2 -Cell Function. Diabetes, 2022, 71, 1525-1545.	0.6	10
123	A-769662 inhibits adipocyte glucose uptake in an AMPK-independent manner. Biochemical Journal, 2021, 478, 633-646.	3.7	9
124	Regulating the Motor for GLUT4 Vesicle Traffic. Cell Metabolism, 2008, 8, 344-346.	16.2	8
125	Investigation of salicylate hepatic responses in comparison with chemical analogues of the drug. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1412-1422.	3.8	8
126	Identification of novel PCTAIRE-1/CDK16 substrates using a chemical genetic screen. Cellular Signalling, 2019, 59, 53-61.	3.6	8

#	Article	IF	CITATIONS
127	Standardized LC×LC-ELSD Fractionation Procedure for the Identification of Minor Bioactives via the Enzymatic Screening of Natural Extracts. Journal of Natural Products, 2016, 79, 2856-2864.	3.0	7
128	Natural (dihydro)phenanthrene plant compounds are direct activators of AMPK through its allosteric drug and metabolite–binding site. Journal of Biological Chemistry, 2022, 298, 101852.	3.4	6
129	Creatine kinase release from regenerated muscles after eccentric contractions in rats. European Journal of Applied Physiology and Occupational Physiology, 1996, 73, 516-520.	1.2	5
130	Opposing effects on regulated insulin secretion of acute vs chronic stimulation of AMP-activated protein kinase. Diabetologia, 2022, 65, 997-1011.	6.3	4
131	Silencing Metabolic Disorders by Novel SIRT1 Activators. Cell Metabolism, 2008, 7, 3-4.	16.2	3
132	PEN2: Metformin's new partner at lysosome. Cell Research, 2022, 32, 507-508.	12.0	1
133	Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle. Biochemical and Biophysical Research Communications, 2004, 319, 419-419.	2.1	Ο
134	Skeletal muscle. , 2022, , 213-225.		0
135	How moderate changes in Akt T-loop phosphorylation impact on tumorigenesis and insulin resistance. Journal of Cell Science, 2011, 124, e1-e1.	2.0	0