Caren Norden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1837635/publications.pdf

Version: 2024-02-01

40 papers

3,313 citations

279798 23 h-index 330143 37 g-index

58 all docs 58 docs citations

58 times ranked 4367 citing authors

#	Article	IF	CITATIONS
1	Content-aware image restoration: pushing the limits of fluorescence microscopy. Nature Methods, 2018, 15, 1090-1097.	19.0	758
2	Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays, 2017, 39, 1700003.	2.5	320
3	The NoCut Pathway Links Completion of Cytokinesis to Spindle Midzone Function to Prevent Chromosome Breakage. Cell, 2006, 125, 85-98.	28.9	267
4	Actomyosin Is the Main Driver of Interkinetic Nuclear Migration in the Retina. Cell, 2009, 138, 1195-1208.	28.9	234
5	Uncovering multiple axonal targeting pathways in hippocampal neurons. Journal of Cell Biology, 2003, 162, 1317-1328.	5. 2	155
6	A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nature Cell Biology, 2009, 11, 477-483.	10.3	118
7	Apical migration of nuclei during G2 is a prerequisite for all nuclear motion in zebrafish neuroepithelia. Development (Cambridge), 2011, 138, 5003-5013.	2.5	117
8	Ankyrin-Dependent and -Independent Mechanisms Orchestrate Axonal Compartmentalization of L1 Family Members Neurofascin and L1/Neuron-Glia Cell Adhesion Molecule. Journal of Neuroscience, 2007, 27, 590-603.	3.6	99
9	Interkinetic Nuclear Migration Is Centrosome Independent and Ensures Apical Cell Division to Maintain Tissue Integrity. Developmental Cell, 2015, 32, 203-219.	7.0	92
10	Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. ELife, 2017, 6, .	6.0	90
11	Neuronal Migration and Lamination in the Vertebrate Retina. Frontiers in Neuroscience, 2017, 11, 742.	2.8	88
12	Conditional control of fluorescent protein degradation by an auxin-dependent nanobody. Nature Communications, 2018, 9, 3297.	12.8	85
13	Mechanisms controlling arrangements and movements of nuclei in pseudostratified epithelia. Trends in Cell Biology, 2013, 23, 141-150.	7.9	78
14	Independent modes of ganglion cell translocation ensure correct lamination of the zebrafish retina. Journal of Cell Biology, 2016, 215, 259-275.	5.2	69
15	Mitotic Position and Morphology of Committed Precursor Cells in the Zebrafish Retina Adapt to Architectural Changes upon Tissue Maturation. Cell Reports, 2014, 7, 386-397.	6.4	64
16	Pseudostratified epithelia – cell biology, diversity and roles in organ formation at a glance. Journal of Cell Science, 2017, 130, 1859-1863.	2.0	59
17	Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Scientific Reports, 2016, 6, 21206.	3.3	51
18	Heterogeneity, Cell Biology and Tissue Mechanics of Pseudostratified Epithelia: Coordination of Cell Divisions and Growth in Tightly Packed Tissues. International Review of Cell and Molecular Biology, 2016, 325, 89-118.	3.2	45

#	Article	IF	Citations
19	The vertebrate retina: A model for neuronal polarization <i>in vivo</i> . Developmental Neurobiology, 2011, 71, 567-583.	3.0	42
20	Using Light Sheet Fluorescence Microscopy to Image Zebrafish Eye Development. Journal of Visualized Experiments, 2016, , e53966.	0.3	40
21	Slit1b-Robo3 Signaling and N-Cadherin Regulate Apical Process Retraction in Developing Retinal Ganglion Cells. Journal of Neuroscience, 2012, 32, 223-228.	3.6	37
22	Cell and tissue morphology determine actin-dependent nuclear migration mechanisms in neuroepithelia. Journal of Cell Biology, 2019, 218, 3272-3289.	5.2	36
23	Collective cell migration: general themes and new paradigms. Current Opinion in Genetics and Development, 2019, 57, 54-60.	3.3	35
24	Yap/Taz-TEAD activity links mechanical cues to progenitor cell behavior during zebrafish hindbrain segmentation. Development (Cambridge), 2019, 146, .	2.5	33
25	Stochasticity and determinism in cell fate decisions. Development (Cambridge), 2020, 147, .	2.5	32
26	Inhibitory neuron migration and IPL formation in the developing zebrafish retina. Development (Cambridge), 2015, 142, 2665-77.	2.5	30
27	A non-cell-autonomous actin redistribution enables isotropic retinal growth. PLoS Biology, 2018, 16, e2006018.	5.6	28
28	Centriole Amplification in Zebrafish Affects Proliferation and Survival but Not Differentiation of Neural Progenitor Cells. Cell Reports, 2015, 13, 168-182.	6.4	23
29	Dissection of septin actin interactions using actin overexpression in Saccharomyces cerevisiae. Molecular Microbiology, 2004, 53, 469-483.	2.5	22
30	Inhibition of sphingolipid synthesis affects kinetics but not fidelity of L1/NgCAM transport along direct but not transcytotic axonal pathways. Molecular and Cellular Neurosciences, 2006, 31, 525-538.	2.2	20
31	Stochastic single cell migration leads to robust horizontal cell layer formation in the vertebrate retina. Development (Cambridge), 2019, 146, .	2.5	19
32	<i>De novo</i> genesis of retinal ganglion cells by targeted expression of <i>Klf4 in vivo</i> Development (Cambridge), 2019, 146, .	2.5	18
33	Extracellular mechanical forces drive endocardial cell volume decrease during zebrafish cardiac valve morphogenesis. Developmental Cell, 2022, 57, 598-609.e5.	7.0	18
34	Asymmetric neurogenic commitment of retinal progenitors involves Notch through the endocytic pathway. ELife, 2020, 9, .	6.0	17
35	Amoeboid-like migration ensures correct horizontal cell layer formation in the developing vertebrate retina. ELife, 0, 11 , .	6.0	9
36	Vision-related convergent gene losses reveal SERPINE3's unknown role in the eye. ELife, 0, 11, .	6.0	9

CAREN NORDEN

#	Article	IF	CITATIONS
37	Apical migration of nuclei during G2 is a prerequisite for all nuclear motion in zebrafish neuroepithelia. Development (Cambridge), 2012, 139, 2635-2635.	2.5	7
38	Shining a light on extracellular matrix dynamics in vivo. Seminars in Cell and Developmental Biology, 2021, 120, 85-93.	5.0	5
39	Choosing the right microscope to image mitosis in zebrafish embryos: A practical guide. Methods in Cell Biology, 2018, 145, 107-127.	1.1	2
40	Division-Plane Positioning: Microtubules Strike Back. Current Biology, 2005, 15, R595-R597.	3.9	0