Johanna L Mathieu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1837340/publications.pdf

Version: 2024-02-01

109 papers 2,915 citations

331670 21 h-index 243625 44 g-index

114 all docs

114 docs citations

114 times ranked 2257 citing authors

#	Article	IF	CITATIONS
1	State Estimation and Control of Electric Loads to Manage Real-Time Energy Imbalance. IEEE Transactions on Power Systems, 2013, 28, 430-440.	6.5	472
2	Quantifying Changes in Building Electricity Use, With Application to Demand Response. IEEE Transactions on Smart Grid, 2011, 2, 507-518.	9.0	253
3	Arbitraging Intraday Wholesale Energy Market Prices With Aggregations of Thermostatic Loads. IEEE Transactions on Power Systems, 2015, 30, 763-772.	6.5	179
4	Distributionally Robust Chance-Constrained Optimal Power Flow with Uncertain Renewables and Uncertain Reserves Provided by Loads. IEEE Transactions on Power Systems, 2016, , 1-1.	6.5	132
5	State Estimation and Control of Heterogeneous Thermostatically Controlled Loads for Load Following. , 2012, , .		83
6	Chance Constrained Reserve Scheduling Using Uncertain Controllable Loads Part I: Formulation and Scenario-Based Analysis. IEEE Transactions on Smart Grid, 2019, 10, 1608-1617.	9.0	71
7	Scheduling distributed energy storage units to provide multiple services under forecast error. International Journal of Electrical Power and Energy Systems, 2015, 72, 48-57.	5.5	69
8	Modeling and Optimal Operation of Distributed Battery Storage in Low Voltage Grids. IEEE Transactions on Power Systems, 2017, 32, 4340-4350.	6.5	68
9	Variability in automated responses of commercial buildings and industrial facilities to dynamic electricity prices. Energy and Buildings, 2011, 43, 3322-3330.	6.7	63
10	Modeling options for demand side participation of thermostatically controlled loads. , 2013, , .		62
11	Emissions impacts of using energy storage for power system reserves. Applied Energy, 2016, 168, 444-456.	10.1	60
12	Examining uncertainty in demand response baseline models and variability in automated responses to dynamic pricing. , 2011 , , .		57
13	An Optimal Power-Flow Approach to Improve Power System Voltage Stability Using Demand Response. IEEE Transactions on Control of Network Systems, 2019, 6, 1015-1025.	3.7	56
14	Uncertainty in the flexibility of aggregations of demand response resources. , 2013, , .		54
15	Energy arbitrage with thermostatically controlled loads. , 2013, , .		50
16	Resource and revenue potential of California residential load participation in ancillary services. Energy Policy, 2015, 80, 76-87.	8.8	49
17	Ancillary Services Through Demand Scheduling and Control of Commercial Buildings. IEEE Transactions on Power Systems, 2017, 32, 186-197.	6.5	45
18	Ambiguous risk constraints with moment and unimodality information. Mathematical Programming, 2019, 173, 151-192.	2.4	43

#	Article	IF	CITATIONS
19	Stochastic Optimal Power Flow with Uncertain Reserves from Demand Response. , 2014, , .		42
20	A framework for and assessment of demand response and energy storage in power systems. , 2013, , .		41
21	Maximizing the potential of energy storage to provide fast frequency control. , 2013, , .		38
22	Modeling, identification, and optimal control of batteries for power system applications. , 2014, , .		38
23	Comparing Centralized and Decentralized Contract Design Enabling Direct Load Control for Reserves. IEEE Transactions on Power Systems, 2016, 31, 2044-2054.	6.5	36
24	Policy and market barriers to energy storage providing multiple services. Electricity Journal, 2017, 30, 50-56.	2.5	36
25	Index Policies for Demand Response. IEEE Transactions on Power Systems, 2014, 29, 1287-1295.	6.5	33
26	Chance Constrained Reserve Scheduling Using Uncertain Controllable Loads Part II: Analytical Reformulation. IEEE Transactions on Smart Grid, 2019, 10, 1618-1625.	9.0	31
27	Separating Feeder Demand Into Components Using Substation, Feeder, and Smart Meter Measurements. IEEE Transactions on Smart Grid, 2020, 11 , 3280-3290.	9.0	30
28	Distributionally Robust Chance-Constrained Optimal Power Flow Assuming Unimodal Distributions With Misspecified Modes. IEEE Transactions on Control of Network Systems, 2019, 6, 1223-1234.	3.7	27
29	Use-Phase Drives Lithium-lon Battery Life Cycle Environmental Impacts When Used for Frequency Regulation. Environmental Science & Environmental Impacts When Used for Frequency Regulation.	10.0	26
30	Managing Communication Delays and Model Error in Demand Response for Frequency Regulation. IEEE Transactions on Power Systems, 2018, 33, 1299-1308.	6.5	25
31	Scheduling distributed energy storage units to provide multiple services. , 2014, , .		22
32	Explaining inefficiencies in commercial buildings providing power system ancillary services. Energy and Buildings, 2017, 152, 216-226.	6.7	22
33	Analytical reformulation of chance-constrained optimal power flow with uncertain load control. , 2015, , .		21
34	Chance-Constrained Water Pumping to Manage Water and Power Demand Uncertainty in Distribution Networks. Proceedings of the IEEE, 2020, 108, 1640-1655.	21.3	21
35	Real-Time Energy Disaggregation of a Distribution Feeder's Demand Using Online Learning. IEEE Transactions on Power Systems, 2018, 33, 4730-4740.	6.5	20
36	Mitigating Voltage Unbalance Using Distributed Solar Photovoltaic Inverters. IEEE Transactions on Power Systems, 2021, 36, 2642-2651.	6.5	20

#	Article	IF	Citations
37	Effects of Load-Based Frequency Regulation on Distribution Network Operation. IEEE Transactions on Power Systems, 2019, 34, 1569-1578.	6.5	18
38	Arsenic remediation of drinking water using iron-oxide coated coal bottom ash. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 1446-1460.	1.7	17
39	Distributionally robust risk-constrained optimal power flow using moment and unimodality information. , 2016, , .		17
40	Control of thermostatic loads using moving horizon estimation of individual load states. , 2014, , .		16
41	Optimal real-time control of multiple battery sets for power system applications. , 2015, , .		15
42	Adaptive demand response: Online learning of restless and controlled bandits. , 2014, , .		14
43	Price and capacity competition in balancing markets with energy storage. Energy Systems, 2017, 8, 169-197.	3.0	14
44	A unified analysis of security-constrained OPF formulations considering uncertainty, risk, and controllability in single and multi-area systems. , 2013, , .		13
45	Adaptive state estimation and control of thermostatic loads for real-time energy balancing. , 2016, , .		13
46	Do commercial buildings become less efficient when they provide grid ancillary services?. Energy Efficiency, 2020, 13, 487-501.	2.8	13
47	Strategies for Network-Safe Load Control With a Third-Party Aggregator and a Distribution Operator. IEEE Transactions on Power Systems, 2021, 36, 3329-3339.	6.5	13
48	Stochastic Dual Dynamic Programming to schedule energy storage units providing multiple services. , $2015, \ldots$		12
49	Water distribution networks as flexible loads: A chance-constrained programming approach. Electric Power Systems Research, 2020, 188, 106570.	3.6	12
50	Characterizing the Response of Commercial and Industrial Facilities to Dynamic Pricing Signals From the Utility. , 2010, , .		11
51	Data-driven optimization approaches for optimal power flow with uncertain reserves from load control., 2015,,.		11
52	Applying Networked Estimation and Control Algorithms to Address Communication Bandwidth Limitations and Latencies in Demand Response. , $2015, , .$		11
53	Ancillary services to the grid from commercial buildings through demand scheduling and control. , 2015, , .		11
54	A Method for Ensuring a Load Aggregator's Power Deviations Are Safe for Distribution Networks. Electric Power Systems Research, 2020, 189, 106781.	3.6	11

#	Article	IF	CITATIONS
55	How Baseline Model Implementation Choices Affect Demand Response Assessments. Journal of Solar Energy Engineering, Transactions of the ASME, 2015, 137, .	1.8	10
56	Using demand response to improve power system voltage stability margins., 2017,,.		10
57	Coordination between an Aggregator and Distribution Operator to Achieve Network-Aware Load Control. , 2019, , .		10
58	Impact of Market Timing on the Profit of a Risk-Averse Load Aggregator. IEEE Transactions on Power Systems, 2020, 35, 3970-3980.	6.5	10
59	Decentralized contract design for demand response. , 2013, , .		9
60	Demand response with moving horizon estimation of individual thermostatic load states from aggregate power measurements. , 2014, , .		9
61	Uncertainty in Demand Response—Identification, Estimation, and Learning. , 2015, , 56-70.		9
62	Understanding the Effect of Baseline Modeling Implementation Choices on Analysis of Demand Response Performance. , 2012, , .		8
63	Technical resource potential of non-disruptive residential demand response in Denmark. , 2014, , .		8
64	A Comparison of Robust and Probabilistic Reliability for Systems with Renewables and Responsive Demand. , $2016, $, .		8
65	Distributionally Robust Chance Constrained Optimal Power Flow Assuming Log-Concave Distributions. , 2018, , .		8
66	Price and capacity competition in zero-mean storage and demand response markets., 2012,,.		7
67	Residential Demand Response program design: Engineering and economic perspectives. , 2013, , .		7
68	Strategic bidding in electricity markets with only renewables. , 2016, , .		7
69	Controlling nonlinear batteries for power systems: Trading off performance and battery life. , 2016, , .		7
70	Two-stage distributionally robust optimal power flow with flexible loads. , 2017, , .		7
71	Applying Steinmetz Circuit Design to Mitigate Voltage Unbalance Using Distributed Solar PV. , 2019, , .		7
72	Inferring the behavior of distributed energy resources with online learning. , 2015, , .		6

#	Article	IF	Citations
73	Hybrid Stochastic-Deterministic Multiperiod DC Optimal Power Flow. IEEE Transactions on Power Systems, 2017, 32, 3934-3945.	6.5	6
74	Overcoming the practical challenges of applying steinmetz circuit design to mitigate voltage unbalance using distributed solar PV. Electric Power Systems Research, 2020, 188, 106563.	3.6	6
75	Transformation of a Mismatched Nonlinear Dynamic System into Strict Feedback Form. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2011, 133, .	1.6	5
76	Enabling renewable resource integration: The balance between robustness and flexibility. , 2015, , .		5
77	The impact of load models in an algorithm for improving voltage stability via demand response. , 2017, ,		5
78	The Flexibility of Thermostatically Controlled Loads as a Function of Price Notice Time., 2018,,.		5
79	Relation between overheating of distribution transformers and switching frequency of electric loads used for demand response. , 2015, , .		4
80	Reducing the computational effort of stochastic multi-period DC optimal power flow with storage. , 2016, , .		4
81	Improving Power System Voltage Stability by Using Demand Response to Maximize the Distance to the Closest Saddle-Node Bifurcation. , 2018, , .		4
82	Chance-constrained water pumping managing power distribution network constraints. , 2019, , .		4
83	Large-Scale Invariant Sets for Safe Coordination of Thermostatic Loads. , 2021, , .		4
84	Planning and control of Electric Vehicles using dynamic energy capacity models., 2013,,.		3
85	Index policies for demand response under uncertainty. , 2013, , .		3
86	Impact of uncertainty from load-based reserves and renewables on dispatch costs and emissions. , 2016, , .		3
87	Performance Limits of Thermostatically Controlled Loads under Probabilistic Switching. IFAC-PapersOnLine, 2017, 50, 8873-8880.	0.9	3
88	An experimental study of energy consumption in buildings providing ancillary services. , 2017, , .		3
89	Disaggregating Load by Type from Distribution System Measurements in Real Time. The IMA Volumes in Mathematics and Its Applications, 2018, , 413-437.	0.5	3
90	Stochastic model predictive controller for wind farm frequency regulation in waked conditions. Electric Power Systems Research, 2022, 211, 108543.	3.6	3

#	Article	IF	Citations
91	Understanding the Effect of Baseline Modeling Implementation Choices on Analysis of Demand Response Performance. , $2013, \ldots$		2
92	Effects of load control for real-time energy balancing on distribution network constraints. , 2017, , .		2
93	A linear approach to manage input delays while supplying frequency regulation using residential loads. , 2017, , .		2
94	Benchmarking of Aggregate Residential Load Models Used for Demand Response. , 2018, , .		2
95	Exploration of tensor decomposition applied to commercial building baseline estimation. , 2019, , .		2
96	Demand Response Potential of Residential Thermostatically Controlled Loads in Michigan., 2019,,.		2
97	Performance of Existing Methods in Baselining Demand Response From Commercial Building HVAC Fans. ASME Journal of Engineering for Sustainable Buildings and Cities, 2021, 2, .	0.9	2
98	Baseline estimation of commercial building HVAC fan power using tensor completion. Electric Power Systems Research, 2020, 189, 106624.	3.6	2
99	Managing Voltage Excursions on the Distribution Network by Limiting the Aggregate Variability of Thermostatic Loads. , 2019, , .		2
100	Integrating unimodality into distributionally robust optimal power flow. Top, 2022, 30, 594-617.	1.6	2
101	Environmental and economic benefits of non-disruptive demand response as a function of consumer information sharing. , 2015 , , .		1
102	Stochastic optimal power flow formulation to achieve emissions objectives with energy storage. , 2016, , .		1
103	Tractable Robust Drinking Water Pumping to Provide Power Network Voltage Support., 2021,,.		1
104	Flexible drinking water pumping to provide multiple grid services. Electric Power Systems Research, 2022, 212, 108491.	3.6	1
105	Exploring Connections Between a Multiple Model Kalman Filter and Dynamic Fixed Share with Applications to Demand Response. , 2018 , , .		0
106	Demand Response: Coordination of Flexible Electric Loads. , 2021, , 530-534.		0
107	Demand Response: Coordination of Flexible Electric Loads. , 2020, , 1-5.		0
108	An Interactive Game Introducing Power Flow Optimization Concepts. , 0, , .		0

ARTICLE IF CITATIONS

109 Generation Scheduling to Limit PM₂.₅Emissions and Dispersion: A Study on the Seasonal Management System of South Korea., 2020,,...