
Artem Kozlovskiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1836471/publications.pdf Version: 2024-02-01

APTEM KOZLOVSKIV

#	Article	IF	CITATIONS
1	Mechanisms of elastoplastic deformation and their effect on hardness of nanogranular Ni-Fe coatings. International Journal of Mechanical Sciences, 2022, 215, 106952.	6.7	14
2	Application of the optical spectroscopy and X-ray diffraction methods for determining the effect of irradiation of the LR-115 type 2 track detector. Optical Materials, 2022, 123, 111826.	3.6	2
3	Study of the mechanisms of the t-ZrO2 → c-ZrO2 type polymorphic transformations in ceramics as a result of irradiation with heavy Xe22+ ions. Solid State Sciences, 2022, 123, 106791.	3.2	15
4	Effect of Irradiation with Low-Energy He2+ Ions on Degradation of Structural, Strength and Heat-Conducting Properties of BeO Ceramics. Crystals, 2022, 12, 69.	2.2	1
5	Induced gyrotropy in thin PET films before and after swift heavy ion irradiation evidenced from analysis of optical interference fringes. Optical Materials, 2022, 123, 111883.	3.6	3
6	Magnetic-plasmonic Ni nanotubes covered with gold for improvement of SERS analysis. Journal of Alloys and Compounds, 2022, 901, 163661.	5.5	12
7	Research of Structural, Strength and Thermal Properties of ZrO2—CeO2 Ceramics Doped with Yttrium. Crystals, 2022, 12, 242.	2.2	7
8	Study of Helium Swelling and Embrittlement Mechanisms in SiC Ceramics. Crystals, 2022, 12, 239.	2.2	11
9	Study of the Application Efficiency of Irradiation with Heavy Ions to Increase the Helium Swelling Resistance of BeO Ceramics. Metals, 2022, 12, 307.	2.3	0
10	Urbach Rule in the Red-Shifted Absorption Edge of PET Films Irradiated with Swift Heavy Ions. Polymers, 2022, 14, 923.	4.5	3
11	Study of Radiation Resistance to Helium Swelling of Li2ZrO3/LiO and Li2ZrO3 Ceramics. Crystals, 2022, 12, 384.	2.2	6
12	Study of Radiation Embitterment and Degradation Processes of Li2ZrO3 Ceramic under Irradiation with Swift Heavy Ions. Ceramics, 2022, 5, 13-23.	2.6	5
13	Study of Phase Formation Processes in Li2ZrO3 Ceramics Obtained by Mechanochemical Synthesis. Crystals, 2022, 12, 21.	2.2	5
14	Study of Structural, Strength, and Thermophysical Properties of Li2+4xZr4â^'xO3 Ceramics. Technologies, 2022, 10, 58.	5.1	1
15	Study of Degradation Mechanisms of Strength and Thermal-Physical Properties of Nitride and Carbide Ceramics—Promising Materials for Nuclear Energy. Nanomaterials, 2022, 12, 1789.	4.1	2
16	Crystal Structure, Magnetic Properties and Thermal Behavior of BaFe _{11.9} In _{0.1} O ₁₉ Ferrite. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	4
17	Synthesis, Phase Transformations and Strength Properties of Nanostructured (1 â^ x)ZrO2 â^ xCeO2 Composite Ceramics. Nanomaterials, 2022, 12, 1979.	4.1	4
18	Ion-Track Template Synthesis and Characterization of ZnSeO3 Nanocrystals. Crystals, 2022, 12, 817.	2.2	11

#	Article	IF	CITATIONS
19	Synthesis, Properties and Photocatalytic Activity of CaTiO3-Based Ceramics Doped with Lanthanum. Nanomaterials, 2022, 12, 2241.	4.1	7
20	Study of Corrosion Mechanisms in Corrosive Media and Their Influence on the Absorption Capacity of Fe2O3/NdFeO3 Nanocomposites. Nanomaterials, 2022, 12, 2302.	4.1	2
21	Study of Morphological, Structural, and Strength Properties of Model Prototypes of New Generation TRISO Fuels. Materials, 2022, 15, 4741.	2.9	Ο
22	Application of UV-Vis Optical Spectroscopy and X-ray Diffraction Methods to Describe the Effect of Alpha-Emitting Radionuclides (Radon) When They Are Detected by Solid-State Film Detectors. Polymers, 2022, 14, 2731.	4.5	1
23	The effect of the applied potentials difference on the phase composition of Co nanowires. Journal of Magnetism and Magnetic Materials, 2021, 517, 167382.	2.3	4
24	Study of the Effect of Low-Energy Irradiation with O2+ Ions on Radiation Hardening and Modification of the Properties of Thin TiO2 Films. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 790-801.	3.7	8
25	The influence of the synthesis conditions on the magnetic behaviour of the densely packed arrays of Ni nanowires in porous anodic alumina membranes. RSC Advances, 2021, 11, 3952-3962.	3.6	40
26	Study of the effect of ion irradiation on increasing the photocatalytic activity of WO3 microparticles. Journal of Materials Science: Materials in Electronics, 2021, 32, 3863-3877.	2.2	79
27	Study of the formation effect of the cubic phase of LiTiO2 on the structural, optical, and mechanical properties of Li2±xTi1±xO3 ceramics with different contents of the X component. Journal of Materials Science: Materials in Electronics, 2021, 32, 7410-7422.	2.2	80
28	Efficiency of Magnetostatic Protection Using Nanostructured Permalloy Shielding Coatings Depending on Their Microstructure. Nanomaterials, 2021, 11, 634.	4.1	10
29	Synthesis, phase transformations, optical properties and efficiency of gamma radiation shielding by Bi2O3-TeO2-WO3 ceramics. Optical Materials, 2021, 113, 110846.	3.6	15
30	Study of irradiation temperature effect on change of structural, optical, and strength properties of BeO ceramics when irradiated with Ar8+ and Xe22 heavy ions. Journal of Materials Science: Materials in Electronics, 2021, 32, 10906-10918.	2.2	1
31	Synthesis, structural properties and shielding efficiency of glasses based on TeO2-(1-x)ZnO-xSm2O3. Journal of Materials Science: Materials in Electronics, 2021, 32, 12111-12120.	2.2	55
32	Structure and magnetic properties of FeCo nanotubes obtained in pores of ion track templates. Nano Structures Nano Objects, 2021, 26, 100691.	3.5	6
33	Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses. Materials Chemistry and Physics, 2021, 263, 124444.	4.0	224
34	Influence of irradiation with heavy Kr15+ ions on the structural, optical and strength properties of BeO ceramic. Journal of Materials Science: Materials in Electronics, 2021, 32, 15375-15385.	2.2	32
35	Study of the effect of doping CeO2 in TeO2–MoO–Bi2O3 ceramics on the phase composition, optical properties and shielding efficiency of gamma radiation. Optical Materials, 2021, 115, 111037.	3.6	9
36	Study of radiation resistance to helium swelling of AlN ceramics in case of irradiation with low-energy He2+ ions with energy of 40ÂkeV. Journal of Materials Science: Materials in Electronics, 2021, 32, 14347-14357.	2.2	4

#	Article	IF	CITATIONS
37	Study of gamma radiation shielding efficiency with radiation-resistant Bi2O3-TeO2-WO3 ceramics. Solid State Sciences, 2021, 115, 106604.	3.2	17
38	Phase transformations in FeCo – Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. Journal of Materials Science: Materials in Electronics, 2021, 32, 16694-16705.	2.2	232
39	Study of Corrosion Resistance and Degradation Mechanisms in LiTiO2-Li2TiO3 Ceramic. Crystals, 2021, 11, 753.	2.2	4
40	DETERMINATION OF CRITICAL DOSES OF RADIATION DAMAGE TO ALN CERAMIC UNDER IRRADIATION OF HELIUM AND HYDROGEN IONS. Eurasian Physical Technical Journal, 2021, 18, 23-28.	0.3	2
41	Comprehensive study of changes in the optical, structural and strength properties of ZrO2 ceramics as a result of phase transformations caused by irradiation with heavy ions. Journal of Materials Science: Materials in Electronics, 2021, 32, 17810-17821.	2.2	4
42	Effect of various dopants on structural properties of Ax@Fe2-xO3 (A = Nd, Gd) nanocomposites. Journal of Materials Science: Materials in Electronics, 2021, 32, 21670-21676.	2.2	1
43	Study of structural features and phase transformations in nanocomposites of Fe2O3@NdFeO3 type. Journal of Materials Science: Materials in Electronics, 2021, 32, 21237-21247.	2.2	1
44	Study of the radiation disordering mechanisms of AlN ceramic structure as a result of helium swelling. Journal of Materials Science: Materials in Electronics, 2021, 32, 21658-21669.	2.2	8
45	Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane. Nanomaterials, 2021, 11, 1775.	4.1	26
46	Boron and Gadolinium Loaded Fe3O4 Nanocarriers for Potential Application in Neutron Capture Therapy. International Journal of Molecular Sciences, 2021, 22, 8687.	4.1	6
47	Study of defect formation processes under heavy ion irradiation of ZnCo2O4 nanowires. Optical Materials, 2021, 118, 111282.	3.6	5
48	Evolution of the absorption edge of PET films irradiated with Kr ions after thermal annealing and ageing. Optical Materials, 2021, 119, 111348.	3.6	30
49	Formation of Stable Lithium-Containing Ceramics Using Solid-Phase Synthesis Method. Crystals, 2021, 11, 1177.	2.2	1
50	Solid-phase synthesis and study of the structural, optical, and photocatalytic properties of the ATiO3, A = Ca, Sr, Ba ceramic. Journal of Materials Science: Materials in Electronics, 2021, 32, 24436-24445.	2.2	6
51	Study of the effect of Fe doping on the structural and optical properties of CdSe films obtained using the electrochemical deposition method. Journal of Materials Science: Materials in Electronics, 2021, 32, 25385-25398.	2.2	3
52	Radiation swelling and hardness of high-entropy alloys based on the TiTaNbV system irradiated with krypton ions. Journal of Materials Science: Materials in Electronics, 2021, 32, 27260-27267.	2.2	3
53	Study of the efficiency of increasing the Bi2O3 concentration on the optical, radiation shielding and strength characteristics of 0.5TeO2-(0.5-x)WO3-xBi2O3 glasses. Optical Materials, 2021, 120, 111494.	3.6	5
54	Synthesis of Ni@Au core-shell magnetic nanotubes for bioapplication and SERS detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127077.	4.7	18

#	Article	IF	CITATIONS
55	Effect of irradiation with heavy Xe22+ ions with energies of 165–230ÂMeV on change in optical characteristics of ZrO2 ceramic. Optical Materials, 2021, 120, 111479.	3.6	12
56	Study of phase transformation dynamics, structural and optical properties of ferroelectric SrTiO3 ceramics. Optical Materials, 2021, 121, 111625.	3.6	2
57	Fe2O3 Nanoparticles Doped with Gd: Phase Transformations as a Result of Thermal Annealing. Molecules, 2021, 26, 457.	3.8	1
58	Assessment of the Irradiation Exposure of PET Film with Swift Heavy Ions Using the Interference-Free Transmission UV-Vis Transmission Spectra. Polymers, 2021, 13, 358.	4.5	14
59	Study of Resistance to Helium Swelling of Lithium-Containing Ceramics under High-Temperature Irradiation. Crystals, 2021, 11, 1350.	2.2	2
60	Study of the Effect of Doping ZrO2 Ceramics with MgO to Increase the Resistance to Polymorphic Transformations under the Action of Irradiation. Nanomaterials, 2021, 11, 3172.	4.1	0
61	A Study on the Applicability of NiFe2O4 Nanoparticles as the Basis of Catalysts for the Purification of Aqueous Media from Pollutants. Catalysts, 2021, 11, 1393.	3.5	1
62	Study of the Effect of Y2O3 Doping on the Resistance to Radiation Damage of CeO2 Microparticles under Irradiation with Heavy Xe22+ Ions. Crystals, 2021, 11, 1459.	2.2	6
63	Synthesis and Properties of SrTiO3 Ceramic Doped with Sm2O3. Materials, 2021, 14, 7549.	2.9	3
64	Catalytic Activity of Ni Nanotubes Covered with Nanostructured Gold. Processes, 2021, 9, 2279.	2.8	1
65	Luminescence efficiency of cerium-doped yttrium aluminum garnet ceramics formed by radiation assisted synthesis. Eastern-European Journal of Enterprise Technologies, 2021, 6, 49-57.	0.5	Ο
66	The effect of Ni12+ heavy ion irradiation on the optical and structural properties of BeO ceramics. Ceramics International, 2020, 46, 4065-4070.	4.8	9
67	Phase transformations as a result of thermal annealing of nanocomposite Fe–Ni / Fe–Ni–O particles. Ceramics International, 2020, 46, 1586-1595.	4.8	7
68	â€~Green' approach for obtaining stable pectin-capped silver nanoparticles: Physico-chemical characterization and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124141.	4.7	76
69	Structural and Magnetic Characteristics of Ferrum Nanotubes Obtained at Different Potentials of Electrodeposition. Physica Status Solidi (B): Basic Research, 2020, 257, 1900319.	1.5	1
70	Study of phase transformations in Co/CoCo2O4 nanowires. Journal of Alloys and Compounds, 2020, 815, 152450.	5.5	106
71	Influence of titanium substitution on structure, magnetic and electric properties of barium hexaferrites BaFe12â^'xTixO19. Journal of Magnetism and Magnetic Materials, 2020, 498, 166117.	2.3	53
72	Investigation of the effect of phase transformations on the magnetic and electrical properties of Co/Co3O4 nanowires. Journal of Magnetism and Magnetic Materials, 2020, 497, 166079.	2.3	2

#	Article	IF	CITATIONS
73	Synthesis of LiBaZrOx ceramics with a core-shell structure. Ceramics International, 2020, 46, 6217-6221.	4.8	54
74	Pecularities of the magnetic structure and microwave properties in Ba(Fe1-xScx)12O19 (x<0.1) hexaferrites. Journal of Alloys and Compounds, 2020, 822, 153575.	5.5	100
75	Study of the stability of the structural properties of CeO2 microparticles to helium irradiation. Surface and Coatings Technology, 2020, 383, 125286.	4.8	59
76	Implantation of low-energy Ni12+ ions to change structural and strength characteristics of ceramics based on SiC. Journal of Materials Science: Materials in Electronics, 2020, 31, 2246-2256.	2.2	3
77	Radiation resistance of thin TiN films as a result of irradiation with low-energy Kr14+ ions. Ceramics International, 2020, 46, 7970-7976.	4.8	8
78	Evolution of morphology, structure, and magnetic parameters of Ni nanotubes with growth in pores of a PET template. Journal of Magnetism and Magnetic Materials, 2020, 497, 165913.	2.3	15
79	The effect of doping of TiO2 thin films with low-energy O2+ ions on increasing the efficiency of hydrogen evolution in photocatalytic reactions of water splitting. Journal of Materials Science: Materials in Electronics, 2020, 31, 21142-21153.	2.2	23
80	Study of the photocatalytic activity of irradiated WO3 microparticles. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	6
81	Multilayer spin-valve CoFeP/Cu nanowires with giant magnetoresistance. Journal of Alloys and Compounds, 2020, 846, 156474.	5.5	24
82	The influence of the energy of incident protons on the defect formation and radiation resistance of AlN ceramics. Solid State Sciences, 2020, 107, 106367.	3.2	5
83	Dynamics of Radiation Damage in AlN Ceramics under High-Dose Irradiation, Typical for the Processes of Swelling and Hydrogenation. Crystals, 2020, 10, 546.	2.2	5
84	Early-Stage Growth Mechanism and Synthesis Conditions-Dependent Morphology of Nanocrystalline Bi Films Electrodeposited from Perchlorate Electrolyte. Nanomaterials, 2020, 10, 1245.	4.1	53
85	Morphology and Microstructure Evolution of Gold Nanostructures in the Limited Volume Porous Matrices. Sensors, 2020, 20, 4397.	3.8	11
86	Evaluation of the Efficiency of Detection and Capture of Manganese in Aqueous Solutions of FeCeOx Nanocomposites Doped with Nb2O5. Sensors, 2020, 20, 4851.	3.8	274
87	Synthesis and resistance to helium swelling of Li2TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 12903-12912.	2.2	35
88	Study of Changes in Optical and Heat-Conducting Properties of AlN Ceramics under Irradiation with Kr15+ and Xe22+ Heavy Ions. Nanomaterials, 2020, 10, 2375.	4.1	3
89	The study of the applicability of ionizing radiation to increase the photocatalytic activity of TiO2 thin films. Journal of Nanostructure in Chemistry, 2020, 10, 331-346.	9.1	22
90	Study of the radiation resistance of Ni nanotubes to irradiation with Xe22+ ions with an energy equal to fission fragments. Surface and Coatings Technology, 2020, 391, 125719.	4.8	1

#	Article	IF	CITATIONS
91	The Effect of Heat Treatment on the Microstructure and Mechanical Properties of 2D Nanostructured Au/NiFe System. Nanomaterials, 2020, 10, 1077.	4.1	72
92	Application of Fe2O3/CeO2 nanocomposites for the purification of aqueous media. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	4
93	Investigation of the Structural Changes and Catalytic Properties of FeNi Nanostructures as a Result of Exposure to Gamma Radiation. Crystals, 2020, 10, 254.	2.2	0
94	Study of hydrogenation processes in radiation-resistant nitride ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 11227-11237.	2.2	44
95	Phase transformations in CoZnO/CoZn nanostructures depending on the difference in applied potentials. Surface and Coatings Technology, 2020, 386, 125495.	4.8	4
96	Iron oxide @ gold nanoparticles: Synthesis, properties and potential use as anode materials for lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125178.	4.7	21
97	Radiation defects upon irradiation with Kr14+ ions of TaC0.81 ceramics. Surface and Coatings Technology, 2020, 386, 125499.	4.8	6
98	Study of the influence of synthesis conditions on stoichiometry and the properties of nanostructured CdSe thin films. Journal of Materials Science: Materials in Electronics, 2020, 31, 12756-12764.	2.2	6
99	Induced Spirals in Polyethylene Terephthalate Films Irradiated with Ar Ions with an Energy of 70 MeV. Crystals, 2020, 10, 427.	2.2	13
100	Blistering in Helium-Ion-Irradiated Zirconium, Aluminum, and Chromium Nitride Films. Journal of Surface Investigation, 2020, 14, 359-365.	0.5	8
101	The effect of lithium doping on the ferroelectric properties of LST ceramics. Ceramics International, 2020, 46, 14548-14557.	4.8	97
102	Study of the use of ionizing radiation for the modification of CoO/Co _{0.65} Zn _{0.35} nanostructures. Radiation Effects and Defects in Solids, 2020, 175, 279-290.	1.2	1
103	The study of the prospects for the use of Li0.15Sr0.85TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 6764-6772.	2.2	50
104	Study of structural and morphological features of nanostructured coatings based on CoCdSe. Solid State Sciences, 2020, 106, 106339.	3.2	2
105	Ion Charge Influence on the Molecular Structure of Polyethylene Terephthalate Films after Irradiation with Swift Heavy Ions. Crystals, 2020, 10, 479.	2.2	12
106	Tolerance of MeN/Si3N4 (MeÂ=ÂZr, Al, Cr) multilayered systems to radiation erosion. Surface and Coatings Technology, 2020, 399, 126146.	4.8	5
107	Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 11729-11740.	2.2	97
108	Induced ordering in polyethylene terephthalate films irradiated with Ar ions with an energy of 70ÂMeV. Surface and Coatings Technology, 2020, 386, 125490.	4.8	14

#	Article	IF	CITATIONS
109	The Study of the Applicability of Electron Irradiation for FeNi Microtubes Modification. Nanomaterials, 2020, 10, 47.	4.1	2
110	The effect of electron irradiation on the structure and properties of α-Fe2O3 nanoparticles as cathode material. Ceramics International, 2020, 46, 13580-13587.	4.8	3
111	Helium swelling in WO3 microcomposites. Ceramics International, 2020, 46, 10521-10529.	4.8	62
112	Synthesis, radical scavenging, and antimicrobial activities of core–shell Au/Ni microtubes. Chemical Papers, 2020, 74, 2189-2199.	2.2	3
113	Electrochemical Behaviour of Ti/Al2O3/Ni Nanocomposite Material in Artificial Physiological Solution: Prospects for Biomedical Application. Nanomaterials, 2020, 10, 173.	4.1	55
114	FeCo– Fe2CoO4/Co3O4 nanocomposites: Phase transformations as a result of thermal annealing and practical application in catalysis. Ceramics International, 2020, 46, 10262-10269.	4.8	168
115	Study of the rate of degradation of permalloy nanowires. Surface and Coatings Technology, 2020, 389, 125621.	4.8	0
116	Phase transformations and changes in the dielectric properties of nanostructured perovskite-like LBZ composites as a result of thermal annealing. Ceramics International, 2020, 46, 14460-14468.	4.8	9
117	Phase Transformations and Photocatalytic Activity of Nanostructured Y2O3/TiO2-Y2TiO5 Ceramic Such as Doped with Carbon Nanotubes. Molecules, 2020, 25, 1943.	3.8	5
118	Degradation processes and helium swelling in beryllium oxide. Surface and Coatings Technology, 2020, 386, 125498.	4.8	10
119	Stability and cytotoxicity study of NiFe2O4 nanocomposites synthesized by co-precipitation and subsequent thermal annealing. Ceramics International, 2020, 46, 16548-16555.	4.8	35
120	The study of the structural characteristics and catalytic activity of Co/CoCo2O4 nanowires. Composites Part B: Engineering, 2020, 191, 107968.	12.0	109
121	Study of Defect Formation Processes in Zinc Nanostructures under Ion Beam Irradiation. High Energy Chemistry, 2020, 54, 102-110.	0.9	0
122	Immobilization of carboranes on Fe3O4-polymer nanocomposites for potential application in boron neutron cancer therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 125035.	4.7	11
123	Carboranes immobilization on Fe3O4 nanocomposites for targeted delivery. Materials Today Communications, 2020, 24, 101247.	1.9	7
124	Evolution of structural and magnetic parameters of nickel nanotubes under irradiation of Fe7+ ions. Eurasian Journal of Physics and Functional Materials, 2020, 4, 139-146.	0.6	1
125	Study of structural changes in ZrO2 ceramics irradiated with heavy ions of Kr15+ with an energy of 147 MeV Physical Sciences and Technology, 2020, 7, .	0.2	1
126	FeNi nanotubes: perspective tool for targeted delivery. Applied Nanoscience (Switzerland), 2019, 9, 835-844.	3.1	18

#	Article	IF	CITATIONS
127	Radiation Defects in Aluminum Nitride under Irradiation with Low-Energy C2+ Ions. High Energy Chemistry, 2019, 53, 143-146.	0.9	0
128	Structure of Zinc Nanotubes. Crystallography Reports, 2019, 64, 615-620.	0.6	0
129	Radiation Defects in Beryllium Oxide under Irradiation with Ni12+ Heavy Ions. High Energy Chemistry, 2019, 53, 296-299.	0.9	0
130	Effect of Irradiation with Fe7+ lons on the Structural Properties of TiO2 Films. High Energy Chemistry, 2019, 53, 321-325.	0.9	0
131	PET Ion-Track Membranes: Formation Features and Basic Applications. Springer Proceedings in Physics, 2019, , 461-479.	0.2	5
132	The use of pulsed beams for increasing radiation resistance of ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 15724-15733.	2.2	11
133	Characterization and magnetic properties of hollow α-Fe2O3 microspheres obtained by sol gel and spray roasting methods. Journal of Science: Advanced Materials and Devices, 2019, 4, 483-491.	3.1	14
134	Copper nanostructures into pores of SiO2/Si template: galvanic displacement, chemical and structural characterization. Materials Research Express, 2019, 6, 105058.	1.6	6
135	Study of using pulsed beams to increase the radiation resistance of nitride ceramics to helium swelling. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	5
136	Synthesis and Properties of Ferrite-Based Nanoparticles. Nanomaterials, 2019, 9, 1079.	4.1	28
137	Study of the effect of La3+ doping on the properties of ceramics based on BaTiOx. Vacuum, 2019, 168, 108838.	3.5	61
138	Study of Helium Swelling in Nitride Ceramics at Different Irradiation Temperatures. Materials, 2019, 12, 2415.	2.9	7
139	Electrochemical Template Synthesis of Copper Nanotubes from Nitrate and Sulfate Electrolytes. Russian Journal of General Chemistry, 2019, 89, 988-993.	0.8	3
140	Magnetic and microwave properties of carbonyl iron in the high frequency range. Journal of Magnetism and Magnetic Materials, 2019, 490, 165493.	2.3	24
141	Formation and corrosion properties of Ni-based composite material in the anodic alumina porous matrix. Journal of Alloys and Compounds, 2019, 804, 139-146.	5.5	44
142	Features of the Growth Processes and Magnetic Domain Structure of NiFe Nano-objects. Journal of Physical Chemistry C, 2019, 123, 26957-26964.	3.1	91
143	Correlation between structural and magnetic properties of FeNi nanotubes with different lengths. Journal of Alloys and Compounds, 2019, 810, 151874.	5.5	15
144	Influence of deposition potential on structure of Zn-based nanotubes. Materials Today: Proceedings, 2019, 7, 855-859.	1.8	0

#	Article	IF	CITATIONS
145	Investigation of phase transformations and corrosion resistance in Co/CoCo2O4 nanowires and their potential use as a basis for lithium-ion batteries. Scientific Reports, 2019, 9, 16646.	3.3	43
146	STUDY OF THE APPLICABILITY OF FE NANOTUBES AS AN ANODE MATERIAL OF LITHIUM-ION BATTERIES. Progress in Electromagnetics Research M, 2019, 82, 157-166.	0.9	1
147	Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction. Catalysts, 2019, 9, 737.	3.5	17
148	Optimization of PET Ion-Track Membranes Parameters. Materials Today: Proceedings, 2019, 7, 866-871.	1.8	10
149	A simple way to control the filling degree of the SiO2/Si template pores with nickel. Materials Today: Proceedings, 2019, 7, 860-865.	1.8	2
150	SRIM Simulation of Carbon lons Interaction with Ni Nanotubes. Materials Today: Proceedings, 2019, 7, 872-877.	1.8	4
151	Synthesis, phase composition and magnetic properties of double perovskites of A(FeM)O4-x type (A=Ce;) Tj ETQ	q1_1_0.78 4.8	4314 rgBT ¦○ 84
152	Photocatalytically active filtration systems based on modified with titanium dioxide PET-membranes. Nuclear Instruments & Methods in Physics Research B, 2019, 460, 212-215.	1.4	10
153	Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni). Journal of Materials Science: Materials in Electronics, 2019, 30, 11819-11832.	2.2	95
154	Synthesis, phase composition and structural and conductive properties of ferroelectric microparticles based on ATiOx (A = Ba, Ca, Sr). Ceramics International, 2019, 45, 17236-17242.	4.8	39
155	Evolution of Structural and Magnetic Characteristics of Template Synthesized Nickel Nanotubes. NATO Science for Peace and Security Series B: Physics and Biophysics, 2019, , 113-134.	0.3	1
156	Modified ion-track membranes for separation of biological objects. Materials Research Express, 2019, 6, 0850h3.	1.6	4
157	Influence of temperature and electrodeposition potential on structure and magnetic properties of nickel nanotubes. Journal of Magnetism and Magnetic Materials, 2019, 489, 165436.	2.3	16
158	Control of structural parameters and thermal conductivity of BeO ceramics using heavy ion irradiation and post-radiation annealing. Ceramics International, 2019, 45, 15412-15416.	4.8	43
159	Study of Magnetic Properties of Fe100-xNix Nanostructures Using the Mössbauer Spectroscopy Method. Nanomaterials, 2019, 9, 757.	4.1	17
160	Immobilization of boron-rich compound on Fe3O4 nanoparticles: Stability and cytotoxicity. Journal of Alloys and Compounds, 2019, 797, 573-581.	5.5	117
161	Study of the effect of irradiation with Ca ⁵⁺ ions on the increase in Ni nanotubes lifetime, applicable as the basis for lithium-ion batteries. Materials Research Express, 2019, 6, 085074.	1.6	12
162	Effect of irradiation with C2+and O2+ ions on the structural and conductive characteristics of copper nanostructures. Materials Research Express, 2019, 6, 075072.	1.6	7

#	Article	IF	CITATIONS
163	Study of the applicability of directional modification of nanostructures to improve the efficiency of their performance as the anode material of lithium-ion batteries. Materials Research Express, 2019, 6, 075066.	1.6	17
164	Structure, electrical properties and luminescence of ZnO nanocrystals deposited in SiO2/Si track templates. Radiation Measurements, 2019, 125, 52-56.	1.4	15
165	Radiation Defects in Aluminum Nitride-Based Ceramics. High Energy Chemistry, 2019, 53, 71-75.	0.9	1
166	Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering. Vacuum, 2019, 164, 224-232.	3.5	49
167	Synthesis of ZnO Nanocrystals in SiO 2 /Si Track Template: Effect of Electrodeposition Parameters on Structure. Physica Status Solidi (B): Basic Research, 2019, 256, 1800408.	1.5	13
168	Control of Growth Mechanism of Electrodeposited Nanocrystalline NiFe Films. Journal of the Electrochemical Society, 2019, 166, D173-D180.	2.9	97
169	Effect of Acidity on the Morphology, Structure, and Composition of Ni Nanotubes. Russian Journal of Physical Chemistry A, 2019, 93, 125-128.	0.6	1
170	Fe3O4 Nanoparticles for Complex Targeted Delivery and Boron Neutron Capture Therapy. Nanomaterials, 2019, 9, 494.	4.1	128
171	Study of the use of ionizing radiation to improve the efficiency of performance of nickel nanostructures as anodes of lithium-ion batteries. Materials Research Express, 2019, 6, 055026.	1.6	12
172	Features of crystal and magnetÑ–c structure of the BaFe12-xGaxO19 (x â‰ ¤ €¯2) in the wÑ–de temperature r Journal of Alloys and Compounds, 2019, 791, 522-529.	ange. 5.5	93
173	The investigation of various type irradiation effects on aluminum nitride ceramic. Journal of Materials Science: Materials in Electronics, 2019, 30, 8777-8787.	2.2	10
174	Investigation of the effect of ionizing radiation on the structural and conductive characteristics of Ni nanostructures. Vacuum, 2019, 163, 103-109.	3.5	19
175	Optical and structural properties of AlN ceramics irradiated with heavy ions. Optical Materials, 2019, 91, 130-137.	3.6	53
176	Study of phase transformations, structural, corrosion properties and cytotoxicity of magnetite-based nanoparticles. Vacuum, 2019, 163, 236-247.	3.5	33
177	Radiation resistance of AlN ceramics as a result of irradiation with low-energy C2+ ions. Materials Characterization, 2019, 150, 88-97.	4.4	13
178	Influence of He-ion irradiation of ceramic AlN. Vacuum, 2019, 163, 45-51.	3.5	19
179	Iron Nanotubes in the Pores of Ion-Track Matrixes for Nanoelectronics. , 2019, , .		0
180	The modification of PETF-membranes by Langmuir-Blodgett films of Nafion. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012029.	0.6	0

#	Article	IF	CITATIONS
181	Function composites materials for shielding applications: Correlation between phase separation and attenuation properties. Journal of Alloys and Compounds, 2019, 771, 238-245.	5.5	63
182	Degradation mechanism and way of surface protection of nickel nanostructures. Materials Chemistry and Physics, 2019, 223, 88-97.	4.0	25
183	Changes in optical and structural properties of AlN after irradiation with C2+ ions of 40†keV. Vacuum, 2019, 161, 103-110.	3.5	29
184	Defect formation in AlN after irradiation with He2+ ions. Ceramics International, 2019, 45, 8130-8137.	4.8	20
185	Study of the effect of irradiation with Fe ⁷⁺ ions on the structural properties of thin TiO ₂ foils. Materials Research Express, 2019, 6, 046309.	1.6	15
186	FeCo nanotubes: possible tool for targeted delivery of drugs and proteins. Applied Nanoscience (Switzerland), 2019, 9, 1091-1099.	3.1	17
187	Investigation of the radiation resistance of nitride ceramics during irradiation with low-energy. Materials Research Express, 2019, 6, 016416.	1.6	1
188	Investigation of radiation resistance of AlN ceramics. Vacuum, 2019, 159, 144-151.	3.5	23
189	Synthesis of gold nanostructures using wet chemical deposition in SiO ₂ /Si template. Lithuanian Journal of Physics, 2019, 59, .	0.4	7
190	Influence of Space Charge During the Oxidation of Metal Surfaces. Oxidation of Metals, 2018, 90, 515-526.	2.1	1
191	Influence of media with different acidity on structure of FeNi nanotubes. EPJ Web of Conferences, 2018, 177, 01003.	0.3	3
192	The study of changes in structural properties of Cu films under ionizing radiation. Materials Research Express, 2018, 5, 055008.	1.6	2
193	Effect of the Synthesis Conditions and Microstructure for Highly Effective Electron Shields Production Based on Bi Coatings. ACS Applied Energy Materials, 2018, 1, 1695-1702.	5.1	65
194	Targeted Modification of Ni Nanotubes by Electron Irradiation. Inorganic Materials, 2018, 54, 386-391.	0.8	2
195	Synthesis of ZnO nanocrystals in a-SiO2/Si ion track templates. Surface and Coatings Technology, 2018, 355, 11-15.	4.8	11
196	Influence of the applied potentials difference on structural and conductive properties of CoZnO nanotubes. Materials Research Express, 2018, 5, 045010.	1.6	4
197	Study on changes in structural properties of Ni/Cu dendrites under irradiation by He-particles. Materials Research Express, 2018, 5, 035054.	1.6	2
198	Synthesis and properties of Cu/CuO nanostructures obtained by electrochemical deposition. Materials Research Express, 2018, 5, 035052.	1.6	10

#	Article	IF	CITATIONS
199	Structural and Conductive Characteristics of Fe/Co Nanotubes. Russian Journal of Electrochemistry, 2018, 54, 178-185.	0.9	3
200	Study of irradiation effect of Xe+22and Kr+14ions on structural properties of Zn nanotubes. Journal of Physics Condensed Matter, 2018, 30, 125301.	1.8	6
201	Effects of C3+ion irradiation on structural, electrical and magnetic properties of Ni nanotubes. Materials Research Express, 2018, 5, 035021.	1.6	5
202	Obtaining of Ni nanotubes with specified properties. Materials Research Express, 2018, 5, 035024.	1.6	5
203	Effect of ionizing radiation on structural and conductive properties of copper nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 175-179.	2.1	16
204	Argon ion irradiation effect on Zn nanotubes. Journal of Materials Science: Materials in Electronics, 2018, 29, 3621-3630.	2.2	19
205	Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization. Materials Chemistry and Physics, 2018, 205, 55-63.	4.0	65
206	Luminescence of the tungsten-activated MgF2 ceramics synthesized under the electron beam. Nuclear Instruments & Methods in Physics Research B, 2018, 435, 263-267.	1.4	19
207	Thermal annealing-induced modification of the structure and electrical conductivity of metallic nanotubes embedded in PET track-etched membranes. Chemical Papers, 2018, 72, 173-180.	2.2	2
208	Electrophysical and thermal properties of NaxCu2-xS (x = 0.05, 0.075, 0.10) and Na0.125Cu1.75S semiconductor alloys. IOP Conference Series: Materials Science and Engineering, 2018, 447, 012031.	0.6	1
209	Structure of zinc oxide nanocrystals in track templates. Journal of Physics: Conference Series, 2018, 1115, 032084.	0.4	1
210	Study of Structural and Conductive Properties of Copper Nanotubes Modified with Ionizing Radiation. , 2018, , .		0
211	Radiation Stability of Copper Films under Irradiation with He2+ Ions. High Energy Chemistry, 2018, 52, 419-422.	0.9	2
212	Magnetic Nanostructured System for Biomedical Applications Based on FeNi Nanotubes. Nanotechnologies in Russia, 2018, 13, 331-336.	0.7	7
213	Studying the Corrosion Resistance of Fe3O4 Nanoparticles. Bulletin of the Russian Academy of Sciences: Physics, 2018, 82, 1342-1347.	0.6	0
214	Influence of irradiation temperature on properties change of AlN ceramics. Vacuum, 2018, 158, 93-100.	3.5	12
215	Immobilization of carborane derivatives on Ni/Fe nanotubes for BNCT. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	19
216	Modification of Fe ₃ O ₄ nanoparticles with carboranes. Materials Research Express, 2018, 5, 105011.	1.6	22

#	Article	IF	CITATIONS
217	Investigation of the influence of irradiation with Fe ⁺⁷ ions on structural properties of AlN ceramics. Materials Research Express, 2018, 5, 065502.	1.6	28
218	Effect of electronic modification on nanostructures stability to degradation. Materials Research Express, 2018, 5, 075010.	1.6	9
219	Determination of Optimal Conditions for Electoless Synthesis of Copper Nanotubes in the Polymer Matrix. Russian Journal of General Chemistry, 2018, 88, 1213-1218.	0.8	7
220	Synthesis of Porous Tungsten from Tungsten–Cadmium Film Coatings. Technical Physics Letters, 2018, 44, 483-486.	0.7	4
221	The behavior of Ni nanotubes under the influence of environments with different acidities. CrystEngComm, 2018, 20, 3258-3266.	2.6	14
222	The influence of thermal annealing on structural properties of Ni nanotubes. Vacuum, 2018, 153, 254-261.	3.5	14
223	Effect of Î ³ -Radiation on the Structural and Conducting Properties of Copper Nanotubes. High Energy Chemistry, 2018, 52, 152-156.	0.9	1
224	Study of the Reactivity of Ni Nanotubes in Media with Different рЕ Crystallography Reports, 2018, 63, 90-95.	0.6	3
225	Preparation and morphology-dependent wettability of porous alumina membranes. Beilstein Journal of Nanotechnology, 2018, 9, 1423-1436.	2.8	42
226	Investigation of Modification of Zinc Nanotubes by Bombardment with Kr+14 lons. High Energy Chemistry, 2018, 52, 302-306.	0.9	2
227	Influence of deposition temperature on the structure and catalytic properties of the copper nanotubes composite membranes. Materials Research Express, 2018, 5, 065041.	1.6	17
228	Electron/gamma radiation-induced synthesis and catalytic activity of gold nanoparticles supported on track-etched poly(ethylene terephthalate) membranes. Materials Chemistry and Physics, 2018, 217, 31-39.	4.0	21
229	Copper nanotube composite membrane as a catalyst in Mannich reaction. Chemical Papers, 2018, 72, 3189-3194.	2.2	19
230	Dynamics of changes in structural properties of AlN ceramics after Xe+22 ion irradiation. Vacuum, 2018, 155, 412-422.	3.5	42
231	SYSTEMATIC STUDY OF STRUCTURAL AND CONDUCTIVE PROPERTIES OF COPPER NANOTUBES MODIFIED BY IONIZING RADIATION. Nanoscience and Technology, 2018, 9, 139-153.	1.8	2
232	INFLUENCE OF IONIZING IRRADIATION ON THE PARAMETERS OF ZN NANOTUBES ARRAYS FOR DESIGN OF FLEXIBLE ELECTRONICS ELEMENTS. Pribory I Metody Izmerenij, 2018, 9, 66-73.	0.3	6
233	Phase analysis, thermal and thermoelectric properties of nanocrystalline Na0.15Cu1.85S, Na0.17Cu1.80S, Na0.20Cu1.77S alloys. Eurasian Journal of Physics and Functional Materials, 2018, 2, 231-241.	0.6	4
234	Influence of electrodeposition parameters on structural and morphological features of Ni nanotubes. Physics of Metals and Metallography, 2017, 118, 164-169.	1.0	36

#	Article	IF	CITATIONS
235	Bone-to-Implant Contact and New Bone Formation Within Human Freeze-Dried Bone Blocks Grafted Over Rabbit Calvaria. International Journal of Oral and Maxillofacial Implants, 2017, 32, 768-773.	1.4	4
236	Structure and physical properties of iron nanotubes obtained by template synthesis. Physics of the Solid State, 2017, 59, 784-790.	0.6	17
237	Growth mechanisms of spatially separated copper dendrites in pores of a SiO ₂ template. Philosophical Magazine, 2017, 97, 2268-2283.	1.6	35
238	Ionizing Radiation Effects in Ni Nanotubes. IOP Conference Series: Materials Science and Engineering, 2017, 168, 012056.	0.6	1
239	Electrochemically deposited copper nanotubes. Journal of Surface Investigation, 2017, 11, 270-275.	0.5	24
240	Changes in structural and conducting characteristics of zinc nanotubes by bombardment with Xe+22 heavy ions. High Energy Chemistry, 2017, 51, 11-16.	0.9	9
241	Hydrophobization of track membrane surface by ion-plasma sputtering method. AIP Conference Proceedings, 2017, , .	0.4	1
242	Radiation modification of Ni nanotubes by electrons. Materials Research Express, 2017, 4, 105042.	1.6	2
243	Changes in the structure and conducting properties of copper nanotubes as a result of bombardment with O3+ ions. High Energy Chemistry, 2017, 51, 375-380.	0.9	2
244	Studying the properties of Fe and Fe–Co nanotubes in polymer ion-track membranes. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 831-835.	0.6	4
245	Characterization of Pet Track Membrane Parameters. Springer Proceedings in Physics, 2017, , 79-91.	0.2	5
246	Modification of structural and conductive properties of Zn nanotubes by irradiation with electrons with an energy of 5 MeV. Materials Research Express, 2017, 4, 125023.	1.6	10
247	Instability of monovalent ions of transitional metals in alkaline earth fluorides: CaF2 and SrF2 activated by Co2+ or Ni2+. Bulletin of the Russian Academy of Sciences: Physics, 2017, 81, 1069-1074.	0.6	2
248	Investigation of the influence of electron irradiation on the properties of cobalt nanotubes. Crystallography Reports, 2017, 62, 739-744.	0.6	4
249	The effect of oxidation pretreatment of polymer template on the formation and catalytic activity of Au/PET membrane composites. Chemical Papers, 2017, 71, 2353-2358.	2.2	38
250	Biosynthesis of lactic acid in a membrane bioreactor for cleaner technology of polylactide production. Clean Technologies and Environmental Policy, 2017, 19, 869-882.	4.1	16
251	Asymmetrical track-etched membranes prepared by double-sided irradiation on the DC-60 cyclotron. Petroleum Chemistry, 2017, 57, 489-497.	1.4	6
252	Evolution of the polyethylene terephthalate track membranes parameters at the etching process. Journal of Contemporary Physics, 2017, 52, 155-160.	0.6	47

#	Article	IF	CITATIONS
253	Electrodeposited ferromagnetic nanotubes: Structure and magnetic properties. , 2017, , .		1
254	Synthesis and properties of Ni <inf>x</inf> /Au <inf>1â^'x</inf> nanotubes. , 2017, , .		0
255	Comprehensive Study of Ni Nanotubes for Bioapplications: From Synthesis to Payloads Attaching. Journal of Nanomaterials, 2017, 2017, 1-9.	2.7	45
256	Variation of polymer-template pore geometry as a means of controlling the magnetic properties of metallic nanostructures. Petroleum Chemistry, 2017, 57, 790-795.	1.4	2
257	FERROMAGNETIC NANOTUBES IN PORES OF TRACK MEMBRANES FOR THE FLEXIBLE ELECTRONIC ELEMENTS. Pribory I Metody Izmerenij, 2017, 8, 214-221.	0.3	2
258	Ionizing Radiation Induced Modification of the Copper Nanotubes Structure. Journal of Nano- and Electronic Physics, 2017, 9, 06017-1-06017-6.	0.5	2
259	The effect of electron irradiation on structural properties of cobalt nanotubes. Technical Physics Letters, 2016, 42, 1018-1021.	0.7	1
260	Controlled template synthesis and properties of cobalt nanotubes. Petroleum Chemistry, 2016, 56, 956-962.	1.4	6
261	Tunable synthesis of copper nanotubes. IOP Conference Series: Materials Science and Engineering, 2016, 110, 012013.	0.6	26
262	Synthesis and properties of Fe/Ni nanotubes. Crystallography Reports, 2016, 61, 842-848.	0.6	0
263	Effect of thermal annealing on the structural and conducting properties of zinc nanotubes synthesized in the matrix of track-etched membranes. Petroleum Chemistry, 2016, 56, 330-334.	1.4	5
264	Mossbauer research of Fe/Co nanotubes based on track membranes. Nuclear Instruments & Methods in Physics Research B, 2016, 381, 103-109.	1.4	24
265	A Mössbauer study of iron and iron–cobalt nanotubes in polymer ion-track membranes. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2016, 71, 193-201.	0.4	4
266	Fe nanotubes: synthesis, structural and magnetic properties. Chemical Bulletin of Kazakh National University, 2016, , 4-11.	0.1	4
267	Study of Ni/Fe nanotube properties. Nuclear Instruments & Methods in Physics Research B, 2015, 365, 663-667.	1.4	28
268	Temperature Dependent Catalytic Activity of Ag/PET Ion-Track Membranes Composites. Acta Physica Polonica A, 2015, 128, 871-875.	0.5	15
269	Electrochemical synthesis and crystal structure of ordered arrays of Со – nanotubes. Chemical Bulletin of Kazakh National University, 2015, , 72-80.	0.1	4
270	Synthesis and study of properties of Zn nanotubes. Chemical Bulletin of Kazakh National University, 2015, , 40-48.	0.1	2

#	Article	IF	CITATIONS
271	The concepts of the process of aluminothermic obtaining of Al – Ti master alloy from TiO2 dissolved in chloride-fluoride melt. Tsvetnye Metally, 2015, , 34-38.	0.2	3
272	Study of solar activity from the position of multifractal analysis. New Astronomy, 2013, 23-24, 36-40.	1.8	5
273	Structural and luminescent characteristics of YAG phosphors synthesized in the radiation field. IOP Conference Series: Materials Science and Engineering, 0, 510, 012031.	0.6	3
274	Track-Etch membranes: the Kazakh experience. , 0, 76, 143-147.		9

17