
Nandimalla Vishnu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1836266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of Uric acid in human urine samples. Sensors and Actuators B: Chemical, 2019, 279, 53-60.	7.8	167
2	Electrochemical immobilization of ellagic acid phytochemical on MWCNT modified glassy carbon electrode surface and its efficient hydrazine electrocatalytic activity in neutral pH. Journal of Electroanalytical Chemistry, 2016, 782, 215-224.	3.8	63
3	Pencil graphite as an elegant electrochemical sensor for separation-free and simultaneous sensing of hypoxanthine, xanthine and uric acid in fish samples. Analytical Methods, 2017, 9, 2265-2274.	2.7	52
4	A preanodized 6B-pencil graphite as an efficient electrochemical sensor for mono-phenolic preservatives (phenol and meta-cresol) in insulin formulations. Analytical Methods, 2015, 7, 1943-1950.	2.7	47
5	Disposable, efficient and highly selective electrochemical sensor based on Cadmium oxide nanoparticles decorated screen-printed carbon electrodeÂfor ascorbic acid determination in fruit juices. Nano Structures Nano Objects, 2018, 16, 96-103.	3.5	40
6	Bimetallic Pt-Pd nanostructures supported on MoS2 as an ultra-high performance electrocatalyst for methanol oxidation and nonenzymatic determination of hydrogen peroxide. Mikrochimica Acta, 2018, 185, 399.	5.0	40
7	Single step grown MoS2 on pencil graphite as an electrochemical sensor for guanine and adenine: A novel and low cost electrode for DNA studies. Biosensors and Bioelectronics, 2019, 124-125, 122-128.	10.1	38
8	A Novel Biomass Derived Carbon Quantum Dots for Highly Sensitive and Selective Detection of Hydrazine. Electroanalysis, 2018, 30, 2228-2232.	2.9	37
9	Cuprous oxide nanocubes decorated reduced graphene oxide nanosheets embedded in chitosan matrix: A versatile electrode material for stable supercapacitor and sensing applications. Journal of Electroanalytical Chemistry, 2019, 834, 187-195.	3.8	35
10	Tea quality testing using 6B pencil lead as an electrochemical sensor. Analytical Methods, 2018, 10, 2327-2336.	2.7	32
11	Novel voltammetric detection of norfloxacin in urine and blood serum using a flexible Ni foam based Ni-Co-MOF ultrathin nanosheets derived from Ni-Co-LDH. Microchemical Journal, 2021, 160, 105747.	4.5	25
12	Intrinsic Ironâ€Containing Multiwalled Carbon Nanotubes as Electroâ€Fenton Catalyst for the Conversion of Benzene to Redoxâ€Active Surfaceâ€Confined Quinones. ChemElectroChem, 2016, 3, 986-992.	3.4	23
13	Unusual neutral pH assisted electrochemical polymerization of aniline on a MWCNT modified electrode and its enhanced electro-analytical features. Analyst, The, 2013, 138, 6296.	3.5	22
14	Selective in-situ derivatization of intrinsic nickel to nickel hexacyanoferrate on carbon nanotube and its application for electrochemical sensing of hydrazine. Journal of Electroanalytical Chemistry, 2019, 837, 60-66.	3.8	22
15	Development of Prussian Blue and Fe(bpy)32+ hybrid modified pencil graphite electrodes utilizing its intrinsic iron for electroanalytical applications. Journal of Electroanalytical Chemistry, 2017, 786, 145-153.	3.8	20
16	Impact of intrinsic iron on electrochemical oxidation of pencil graphite and its application as supercapacitors. Electrochimica Acta, 2018, 269, 274-281.	5.2	19
17	Review—Pencil Graphite Electrodes as Platform for Enzyme and Enzyme-Like Protein Immobilization for Electrochemical Detection. Journal of the Electrochemical Society, 2020, 167, 037520.	2.9	19
18	FeS ₂ Grown Pencil Graphite as an Inâ€expensive and Nonâ€enzymatic Sensor for Sensitive Detection of Uric Acid in Nonâ€invasive Samples. Electroanalysis, 2019, 31, 2397-2403.	2.9	18

#	Article	IF	CITATIONS
19	Selective electrochemical polymerization of 1-napthylamine on carbon electrodes and its pH sensing behavior in non-invasive body fluids useful in clinical applications. Sensors and Actuators B: Chemical, 2018, 275, 31-42.	7.8	15
20	Single Step Synthesis of MoSe ₂ â^'MoO ₃ Heterostructure for Highly Sensitive Amperometric Detection of Nitrite in Water Samples of Industrial Areas. Electroanalysis, 2019, 31, 2410-2416.	2.9	15
21	Large area, one step synthesis of NiSe2 films on cellulose paper for glucose monitoring in bio-mimicking samples for clinical diagnostics. Nanotechnology, 2019, 30, 355502.	2.6	14
22	Polyaniline Sheathed Black Phosphorous: A Novel, Advanced Platform for Electrochemical Sensing Applications. Electroanalysis, 2020, 32, 238-247.	2.9	13
23	Highly selective electrochemical detection of diphenylamine in apple samples using rod shaped CuCo2O4 derived from bimetallic organic frameworks. Microchemical Journal, 2021, 165, 106146.	4.5	13
24	A new strategy for simple and quick estimation of redox active nickel impurity in pristine SWCNT as nickel hexacyanoferrate by electrochemical technique. Sensors and Actuators B: Chemical, 2017, 238, 1111-1119.	7.8	11
25	Single Step Synthesis of 2-D Marcasite FeS ₂ Micro-Flowers Based Electrochemical Sensor for Simultaneous Detection of Four DNA Bases. IEEE Nanotechnology Magazine, 2022, 21, 374-379.	2.0	11
26	Electrochemical Sensing Methodology for Antibiogram Assays. Journal of the Electrochemical Society, 2014, 161, B3061-B3063.	2.9	5
27	A low-cost and miniaturized electrochemical cell for low-sample analyses. Microchemical Journal, 2020, 159, 105591.	4.5	4
28	Paper Based Low ost and Portable Ultrasensitive Electroanalytical Devicefor The Detection of Uric Acid in Human Urine. ChemistrySelect, 2021, 6, 8426-8434.	1.5	3