
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1836219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glutathione Peroxidase 4 Senses and Translates Oxidative Stress into 12/15-Lipoxygenase Dependent- and AIF-Mediated Cell Death. Cell Metabolism, 2008, 8, 237-248.	16.2	1,009
2	Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nature Methods, 2016, 13, 859-867.	19.0	522
3	Reactive Glia in the Injured Brain Acquire Stem Cell Properties in Response to Sonic Hedgehog. Cell Stem Cell, 2013, 12, 426-439.	11.1	332
4	Apoptosis-Inducing Factor Triggered by Poly(ADP-Ribose) Polymerase and Bid Mediates Neuronal Cell Death after Oxygen-Glucose Deprivation and Focal Cerebral Ischemia. Journal of Neuroscience, 2005, 25, 10262-10272.	3.6	309
5	RNA-Seq Identifies Circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as Potential Biomarkers for Acute Ischemic Stroke. Circulation Research, 2017, 121, 970-980.	4.5	210
6	Results of a preclinical randomized controlled multicenter trial (pRCT): Anti-CD49d treatment for acute brain ischemia. Science Translational Medicine, 2015, 7, 299ra121.	12.4	207
7	High cortical spreading depression susceptibility and migraineâ€associated symptoms in Ca _v 2.1 S218L mice. Annals of Neurology, 2010, 67, 85-98.	5.3	206
8	Experimental Subarachnoid Hemorrhage Causes Early and Long-Lasting Microarterial Constriction and Microthrombosis: An <i>in-vivo</i> Microscopy Study. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 447-455.	4.3	179
9	Inhalation of Nitric Oxide Prevents Ischemic Brain Damage in Experimental Stroke by Selective Dilatation of Collateral Arterioles. Circulation Research, 2012, 110, 727-738.	4.5	163
10	Nuclear Translocation of Apoptosis-Inducing Factor after Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 458-466.	4.3	160
11	Temporal Profile of Thrombogenesis in the Cerebral Microcirculation after Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2010, 27, 121-130.	3.4	156
12	Effect of Early and Delayed Decompressive Craniectomy on Secondary Brain Damage after Controlled Cortical Impact in Mice. Journal of Neurotrauma, 2006, 23, 1083-1093.	3.4	154
13	Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nature Communications, 2017, 8, 1422.	12.8	130
14	Role of Arginine Vasopressin V ₁ and V ₂ Receptors for Brain Damage After Transient Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 1012-1019.	4.3	127
15	Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Annals of Neurology, 2015, 78, 887-900.	5.3	127
16	Release of Bradykinin and Expression of Kinin B2 Receptors in the Brain: Role for Cell Death and Brain Edema Formation After Focal Cerebral Ischemia in Mice. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 978-989.	4.3	124
17	Nitric Oxide: Considerations for the Treatment of Ischemic Stroke. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1332-1346.	4.3	114
18	Effect of Decompression Craniotomy on Increase of Contusion Volume and Functional Outcome after Controlled Cortical Impact in Mice. Journal of Neurotrauma, 2003, 20, 1307-1314.	3.4	106

#	Article	IF	CITATIONS
19	Crossâ€ŧalk between monocyte invasion and astrocyte proliferation regulates scarring in brain injury. EMBO Reports, 2018, 19, .	4.5	98
20	Applying the Retroâ€Enantio Approach To Obtain a Peptide Capable of Overcoming the Blood–Brain Barrier. Angewandte Chemie - International Edition, 2015, 54, 3967-3972.	13.8	96
21	Characterization of microvascular basal lamina damage and blood–brain barrier dysfunction following subarachnoid hemorrhage in rats. Brain Research, 2007, 1142, 237-246.	2.2	88
22	The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathologica, 2017, 134, 851-868.	7.7	87
23	Non-invasive intraoperative monitoring of blood pressure and arterial pCO2 during surgical anesthesia in mice. Journal of Neuroscience Methods, 2007, 159, 261-267.	2.5	84
24	Inhaled Nitric Oxide Reduces Secondary Brain Damage after Traumatic Brain Injury in Mice. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 311-318.	4.3	81
25	Mitochondrial Small Conductance SK2 Channels Prevent Glutamate-induced Oxytosis and Mitochondrial Dysfunction. Journal of Biological Chemistry, 2013, 288, 10792-10804.	3.4	80
26	Standardized induction of subarachnoid hemorrhage in mice by intracranial pressure monitoring. Journal of Neuroscience Methods, 2010, 190, 164-170.	2.5	78
27	The Role of Bradykinin B ₁ and B ₂ Receptors for Secondary Brain Damage after Traumatic Brain Injury in Mice. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 130-139.	4.3	76
28	Are We Barking Up the Wrong Vessels?. Stroke, 2015, 46, 3014-3019.	2.0	76
29	Causal Role of Apoptosis-Inducing Factor for Neuronal Cell Death Following Traumatic Brain Injury. American Journal of Pathology, 2008, 173, 1795-1805.	3.8	75
30	MILD HYPOTHERMIA (33°C) REDUCES INTRACRANIAL HYPERTENSION AND IMPROVES FUNCTIONAL OUTCOME AFTER SUBARACHNOID HEMORRHAGE IN RATS. Neurosurgery, 2009, 65, 352-359.	1.1	74
31	Modeling Stroke in Mice: Permanent Coagulation of the Distal Middle Cerebral Artery. Journal of Visualized Experiments, 2014, , e51729.	0.3	73
32	Dysfunction of Mouse Cerebral Arteries during Early Aging. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1445-1453.	4.3	66
33	Nitric oxide inhalation reduces brain damage, prevents mortality, and improves neurological outcome after subarachnoid hemorrhage by resolving early pial microvasospasms. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 2096-2107.	4.3	65
34	The immune system in traumatic brain injury. Current Opinion in Pharmacology, 2016, 26, 110-117.	3.5	65
35	Temporal Profile of MicroRNA Expression in Contused Cortex after Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2016, 33, 713-720.	3.4	61
36	Contribution of Matrix Metalloproteinase-9 to Cerebral Edema and Functional Outcome following Experimental Subarachnoid Hemorrhage. Cerebrovascular Diseases, 2011, 32, 289-295.	1.7	60

#	Article	IF	CITATIONS
37	Inversion of neurovascular coupling after subarachnoid hemorrhage inÂvivo. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3625-3634.	4.3	60
38	Role of Bradykinin B2Receptors in the Formation of Vasogenic Brain Edema in Rats. Journal of Neurotrauma, 2001, 18, 1049-1058.	3.4	57
39	The Novel Nitric Oxide Synthase Inhibitor 4-amino-tetrahydro-L-biopterine Prevents Brain Edema Formation and Intracranial Hypertension following Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2009, 26, 1963-1975.	3.4	54
40	Bax Regulates Neuronal Ca ²⁺ Homeostasis. Journal of Neuroscience, 2015, 35, 1706-1722.	3.6	52
41	Changes of Cerebral Blood Flow during the Secondary Expansion of a Cortical Contusion Assessed by ¹⁴ C-lodoantipyrine Autoradiography in Mice Using a Non-Invasive Protocol. Journal of Neurotrauma, 2008, 25, 739-753.	3.4	49
42	In vivo temporal and spatial profile of leukocyte adhesion and migration after experimental traumatic brain injury in mice. Journal of Neuroinflammation, 2013, 10, 32.	7.2	49
43	Role of Cortical Spreading Depressions for Secondary Brain Damage after Traumatic Brain Injury in Mice. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1353-1360.	4.3	48
44	A semi-automated method for isolating functionally intact mitochondria from cultured cells and tissue biopsies. Analytical Biochemistry, 2013, 443, 66-74.	2.4	48
45	Ultrabright Fluorescent Polymeric Nanoparticles with a Stealth Pluronic Shell for Live Tracking in the Mouse Brain. ACS Nano, 2020, 14, 9755-9770.	14.6	48
46	Protocol for the Induction of Subarachnoid Hemorrhage in Mice by Perforation of the Circle of Willis with an Endovascular Filament. Translational Stroke Research, 2014, 5, 653-659.	4.2	40
47	Sustained Alterations of Hypothalamic Tanycytes During Posttraumatic Hypopituitarism in Male Mice. Endocrinology, 2014, 155, 1887-1898.	2.8	37
48	Anatibant®, a selective non-peptide bradykinin B2 receptor antagonist, reduces intracranial hypertension and histopathological damage after experimental traumatic brain injury. Neuroscience Letters, 2009, 454, 115-117.	2.1	36
49	Vasopressin V _{1a} Receptors Mediate Posthemorrhagic Systemic Hypertension Thereby Determining Rebleeding Rate and Outcome After Experimental Subarachnoid Hemorrhage. Stroke, 2012, 43, 227-232.	2.0	36
50	Role of apoptosis inducing factor (AIF) for hippocampal neuronal cell death following global cerebral ischemia in mice. Neuroscience Letters, 2011, 499, 1-3.	2.1	33
51	Quality of life up to 10 years after traumatic brain injury: a cross-sectional analysis. Health and Quality of Life Outcomes, 2020, 18, 166.	2.4	33
52	Inhaled Nitric Oxide Protects Males But not Females from Neonatal Mouse Hypoxia–Ischemia Brain Injury. Translational Stroke Research, 2013, 4, 201-207.	4.2	32
53	Effect of Small Molecule Vasopressin V _{1a} and V ₂ Receptor Antagonists on Brain Edema Formation and Secondary Brain Damage following Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2015, 32, 221-227.	3.4	31
54	Contributions of the immune system to the pathophysiology of traumatic brain injury ââ,¬â€œ evidence by intravital microscopy. Frontiers in Cellular Neuroscience, 2014, 8, 358.	3.7	30

#	Article	IF	CITATIONS
55	Plasminogen activator inhibitorâ€l augments damage by impairing fibrinolysis after traumatic brain injury. Annals of Neurology, 2019, 85, 667-680.	5.3	30
56	Capillary flow disturbances after experimental subarachnoid hemorrhage: A contributor to delayed cerebral ischemia?. Microcirculation, 2019, 26, e12516.	1.8	30
57	Hyperexcitable interneurons trigger cortical spreading depression in an Scn1a migraine model. Journal of Clinical Investigation, 2021, 131, .	8.2	30
58	Endothelial Nitric Oxide Synthase Mediates Arteriolar Vasodilatation after Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2015, 32, 731-738.	3.4	29
59	CO ₂ Has no Therapeutic Effect on Early Micro Vasospasm after Experimental Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, e1-e6.	4.3	28
60	Microvasospasms After Experimental Subarachnoid Hemorrhage Do Not Depend on Endothelin A Receptors. Stroke, 2018, 49, 693-699.	2.0	28
61	Cylindromatosis mediates neuronal cell death in vitro and in vivo. Cell Death and Differentiation, 2018, 25, 1394-1407.	11.2	28
62	Role of endothelial nitric oxide synthase for early brain injury after subarachnoid hemorrhage in mice. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1669-1681.	4.3	28
63	RIPK1 or RIPK3 deletion prevents progressive neuronal cell death and improves memory function after traumatic brain injury. Acta Neuropathologica Communications, 2021, 9, 138.	5.2	27
64	Effect of Decompressive Craniectomy on Outcome Following Subarachnoid Hemorrhage in Mice. Stroke, 2015, 46, 819-826.	2.0	26
65	Arginine Vasopressin V _{1a} Receptor-Deficient Mice Have Reduced Brain Edema and Secondary Brain Damage following Traumatic Brain Injury. Journal of Neurotrauma, 2013, 30, 1442-1448.	3.4	25
66	Phase III Preclinical Trials in Translational Stroke Research: Community Response on Framework and Guidelines. Translational Stroke Research, 2016, 7, 241-247.	4.2	25
67	Quality of life after traumatic brain injury: a cross-sectional analysis uncovers age- and sex-related differences over the adult life span. GeroScience, 2021, 43, 263-278.	4.6	25
68	Bradykinin in Blood and Cerebrospinal Fluid after Acute Cerebral Lesions: Correlations with Cerebral Edema and Intracranial Pressure. Journal of Neurotrauma, 2013, 30, 1638-1644.	3.4	24
69	Acute changes in neurovascular reactivity after subarachnoid hemorrhage <i>inÂvivo</i> . Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 178-187.	4.3	24
70	Contribution of Bradykinin Receptors to the Development of Secondary Brain Damage After Experimental Subarachnoid Hemorrhage. Neurosurgery, 2011, 68, 1118-1123.	1.1	22
71	Long-term impairment of neurovascular coupling following experimental subarachnoid hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1193-1202.	4.3	22
72	Time-Dependent Effects of Arginine-Vasopressin V1 Receptor Inhibition on Secondary Brain Damage after Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 1329-1336.	3.4	21

#	Article	IF	CITATIONS
73	Progressive Histopathological Damage Occurring Up to One Year after Experimental Traumatic Brain Injury Is Associated with Cognitive Decline and Depression-Like Behavior. Journal of Neurotrauma, 2020, 37, 1331-1341.	3.4	21
74	Identification of the Vascular Source of Vasogenic Brain Edema following Traumatic Brain Injury Using In Vivo 2-Photon Microscopy in Mice. Journal of Neurotrauma, 2015, 32, 990-1000.	3.4	20
75	Impact of anesthesia on pathophysiology and mortality following subarachnoid hemorrhage in rats. Experimental & Translational Stroke Medicine, 2012, 4, 5.	3.2	19
76	Inhalation of NO during myocardial ischemia reduces infarct size and improves cardiac function. Intensive Care Medicine, 2012, 38, 1381-1391.	8.2	19
77	Scavenging Free Iron Reduces Arteriolar Microvasospasms After Experimental Subarachnoid Hemorrhage. Stroke, 2021, 52, 4033-4042.	2.0	18
78	Inhibition of bradykinin B2 receptors before, not after onset of experimental subarachnoid hemorrhage prevents brain edema formation and improves functional outcome. Critical Care Medicine, 2009, 37, 2228-2234.	0.9	17
79	A Murine Model of Subarachnoid Hemorrhage. Journal of Visualized Experiments, 2013, , e50845.	0.3	17
80	Pathophysiological Role of Global Cerebral Ischemia following Subarachnoid Hemorrhage: The Current Experimental Evidence. Stroke Research and Treatment, 2013, 2013, 1-7.	0.8	17
81	The Formation of Microthrombi in Parenchymal Microvessels after Traumatic Brain Injury Is Independent of Coagulation Factor XI. Journal of Neurotrauma, 2016, 33, 1634-1644.	3.4	17
82	Skull Fractures Induce Neuroinflammation and Worsen Outcomes after Closed Head Injury in Mice. Journal of Neurotrauma, 2020, 37, 295-304.	3.4	17
83	New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Frontiers in Aging Neuroscience, 2021, 13, 623751.	3.4	17
84	Somatostatin triggers rhythmic electrical firing in hypothalamic GHRH neurons. Scientific Reports, 2016, 6, 24394.	3.3	16
85	Recent progress in translational research on neurovascular and neurodegenerative disorders. Restorative Neurology and Neuroscience, 2017, 35, 87-103.	0.7	16
86	Access to data from clinical trials in the COVID-19 crisis: open, flexible, and time-sensitive. Journal of Clinical Epidemiology, 2021, 130, 143-146.	5.0	16
87	LF16-0687 A Novel Non-Peptide Bradykinin B2 Receptor Antagonist Reduces Vasogenic Brain Edema from a Focal Lesion in Rats. , 2000, 76, 137-139.		16
88	Size‧elective Transfer of Lipid Nanoparticleâ€Based Drug Carriers Across the Blood Brain Barrier Via Vascular Occlusions Following Traumatic Brain Injury. Small, 2022, 18, e2200302.	10.0	15
89	Systematic Review and Meta-analysis of Methodological Quality in In Vivo Animal Studies of Subarachnoid Hemorrhage. Translational Stroke Research, 2020, 11, 1175-1184.	4.2	13
90	The Need for New Biomarkers to Assist with Stroke Prevention and Prediction of Post-Stroke Therapy Based on Plasma-Derived Extracellular Vesicles. Biomedicines, 2021, 9, 1226.	3.2	13

#	Article	IF	CITATIONS
91	Connexin 36 promotes cortical spreading depolarization and ischemic brain damage. Brain Research, 2012, 1479, 80-85.	2.2	12
92	Potassium ions promote hexokinase-II dependent glycolysis. IScience, 2021, 24, 102346.	4.1	12
93	Decreased Secondary Lesion Growth and Attenuated Immune Response after Traumatic Brain Injury in Tlr2/4â^'/â^' Mice. Frontiers in Neurology, 2017, 8, 455.	2.4	11
94	Decompressive Craniectomy Is Associated With Good Quality of Life Up to 10 Years After Rehabilitation From Traumatic Brain Injury. Critical Care Medicine, 2020, 48, 1157-1164.	0.9	11
95	Deviant reporter expression and P2X4 passenger gene overexpression in the soluble EGFP BAC transgenic P2X7 reporter mouse model. Scientific Reports, 2020, 10, 19876.	3.3	11
96	Translational neuroimaging in mild traumatic brain injury. Journal of Neuroscience Research, 2022, 100, 1201-1217.	2.9	11
97	Preclinical Phase III Trials in Translational Stroke Research. Stroke, 2014, 45, 357-357.	2.0	10
98	Central Application of Aliskiren, a Renin Inhibitor, Improves Outcome After Experimental Stroke Independent of Its Blood Pressure Lowering Effect. Frontiers in Neurology, 2019, 10, 942.	2.4	10
99	Stroke and stroke prevention in sickle cell anemia in developed and selected developing countries. Journal of the Neurological Sciences, 2021, 427, 117510.	0.6	10
100	Immobilization of Recombinant Fluorescent Biosensors Permits Imaging of Extracellular Ion Signals. ACS Sensors, 2021, 6, 3994-4000.	7.8	10
101	Adhesion of Leukocytes to Cerebral Venules Precedes Neuronal Cell Death and Is Sufficient to Trigger Tissue Damage After Cerebral Ischemia. Frontiers in Neurology, 2021, 12, 807658.	2.4	10
102	Vasopressin V1a Receptors Regulate Cerebral Aquaporin 1 after Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 665-674.	3.4	9
103	Circadian effects on stroke outcome – Did we not wake up in time for neuroprotection?. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 684-686.	4.3	9
104	Longitudinal Characterization of Blood–Brain Barrier Permeability after Experimental Traumatic Brain Injury by <i>In Vivo</i> 2-Photon Microscopy. Journal of Neurotrauma, 2021, 38, 399-410.	3.4	8
105	Perfusion pressure determines vascular integrity and histomorphological quality following perfusion fixation of the brain. Journal of Neuroscience Methods, 2022, 372, 109493.	2.5	8
106	The neuroprotective effect of 17β-estradiol is independent of its antioxidative properties. Brain Research, 2014, 1589, 61-67.	2.2	7
107	Inhaled Nitric Oxide Treatment for Aneurysmal SAH Patients With Delayed Cerebral Ischemia. Frontiers in Neurology, 2022, 13, 817072.	2.4	6
108	The novel nitric oxide synthase inhibitor 4-amino-tetrahydro-L-biopterine prevents brain edema formation and intracranial hypertension following traumatic brain injury in mice. Journal of Neurotrauma, 0, , 110306202455053.	3.4	5

#	Article	IF	CITATIONS
109	The pseudoprotease iRhom1 controls ectodomain shedding of membrane proteins in the nervous system. FASEB Journal, 2021, 35, e21962.	0.5	5
110	Neurovascular Reactivity in the Aging Mouse Brain Assessed by Laser Speckle Contrast Imaging and 2-Photon Microscopy: Quantification by an Investigator-Independent Analysis Tool. Frontiers in Neurology, 2021, 12, 745770.	2.4	5
111	Dynamic tracing using ultra-bright labeling and multi-photon microscopy identifies endothelial uptake of poloxamer 188 coated poly(lactic-co-glycolic acid) nano-carriers in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102511.	3.3	5
112	CaV2.1 channel mutations causing familial hemiplegic migraine type 1 increase the susceptibility for cortical spreading depolarizations and seizures and worsen outcome after experimental traumatic brain injury. ELife, 2022, 11, .	6.0	5
113	Reactive Glia in the Injured Brain Acquire Stem Cell Properties in Response to Sonic Hedgehog. Cell Stem Cell, 2013, 12, 629.	11.1	4
114	Contusion Rodent Model of Traumatic Brain Injury: Controlled Cortical Impact. Methods in Molecular Biology, 2021, 2193, 49-65.	0.9	4
115	Influence of Organic Solvents on Secondary Brain Damage after Experimental Traumatic Brain Injury. Neurotrauma Reports, 2020, 1, 148-156.	1.4	4
116	AMPKâ€regulated miRNAâ€210â€3p is activated during ischaemic neuronal injury and modulates PI3Kâ€p70S6K signalling. Journal of Neurochemistry, 2021, 159, 710-728.	3.9	3
117	Acid-Ion Sensing Channel 1a Deletion Reduces Chronic Brain Damage and Neurological Deficits after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 1572-1584.	3.4	3
118	Are We Looking Into an Iron Age for Subarachnoid Hemorrhage?. Stroke, 2022, 53, 1643-1644.	2.0	3
119	Experimental Therapies for Brain Edema and Intracranial Hypertension. , 2017, , 353-373.		2
120	Building the Evidence Base for Treatment of Chronic Subdural Hematoma. Journal of Neurotrauma, 2021, 38, 1465-1466.	3.4	2
121	Role of Pial Microvasospasms and Leukocyte Plugging for Parenchymal Perfusion after Subarachnoid Hemorrhage Assessed by In Vivo Multi-Photon Microscopy. International Journal of Molecular Sciences, 2021, 22, 8444.	4.1	2
122	Experimental Techniques to Investigate the Formation of Brain Edema In Vivo. , 2017, , 71-83.		1
123	Paving the Road to Translation. Cerebrovascular Diseases, 2012, 33, 340-340.	1.7	0
124	4. Pathophysiologie und Pathobiochemie. , 2018, , 51-70.		0
125	Diagnostic Potential of Distortion Product Otoacoustic Emissions in Noninvasive Assessment of Elevated Intracranial Pressure: Different Patterns of DPOAE Alterations in the Guinea Pig. ISRN Anesthesiology, 2011, 2011, 1-6.	0.3	Ο
126	Decompressive Craniectomy is Associated with Improved Quality of Life Up to Ten Years After Rehabilitation from Traumatic Brain Injury. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
127	Hexokinase-II Enzymatic Activity Requires High Levels of Intracellular K+. SSRN Electronic Journal, 0, , .	0.4	Ο
128	Pharmacologically targeting inflammation and improving cerebrospinal fluid circulation improves outcome after subarachnoid haemorrhage. EBioMedicine, 2022, 77, 103937.	6.1	0