Martin I Chilvers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1836195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soybean Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Health Progress, 2017, 18, 19-27.	1.4	323
2	MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society Open Science, 2016, 3, 160592.	2.4	232
3	Biology, Yield loss and Control of Sclerotinia Stem Rot of Soybean. Journal of Integrated Pest Management, 2012, 3, 1-7.	2.0	181
4	Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics, 2014, 15, 809.	2.8	164
5	Corn Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada from 2012 to 2015. Plant Health Progress, 2016, 17, 211-222.	1.4	135
6	Oomycete Species Associated with Soybean Seedlings in North America—Part I: Identification and Pathogenicity Characterization. Phytopathology, 2017, 107, 280-292.	2.2	99
7	Oomycete Species Associated with Soybean Seedlings in North America—Part II: Diversity and Ecology in Relation to Environmental and Edaphic Factors. Phytopathology, 2017, 107, 293-304.	2.2	83
8	Corn Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada, from 2016 to 2019. Plant Health Progress, 2020, 21, 238-247.	1.4	83
9	Soybean Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada, from 2015 to 2019. Plant Health Progress, 2021, 22, 483-495.	1.4	80
10	A Real-Time, Quantitative PCR Seed Assay for Botrytis spp. that Cause Neck Rot of Onion. Plant Disease, 2007, 91, 599-608.	1.4	71
11	Didymella pisi sp. nov., the teleomorph of Ascochyta pisi. Mycological Research, 2009, 113, 391-400.	2.5	65
12	Fungicide and Cultivar Effects on Sudden Death Syndrome and Yield of Soybean. Plant Disease, 2016, 100, 1339-1350.	1.4	62
13	Laser ablation tomography for visualization of root colonization by edaphic organisms. Journal of Experimental Botany, 2019, 70, 5327-5342.	4.8	62
14	Integrating GWAS and gene expression data for functional characterization of resistance to white mould in soya bean. Plant Biotechnology Journal, 2018, 16, 1825-1835.	8.3	60
15	Development and Application of qPCR and RPA Genus- and Species-Specific Detection of <i>Phytophthora sojae</i> and <i>P. sansomeana</i> Root Rot Pathogens of Soybean. Plant Disease, 2017, 101, 1171-1181.	1.4	51
16	Crop Management Impacts the Soybean (Glycine max) Microbiome. Frontiers in Microbiology, 2020, 11, 1116.	3.5	48
17	A Coordinated Effort to Manage Soybean Rust in North America: A Success Story in Soybean Disease Monitoring. Plant Disease, 2014, 98, 864-875.	1.4	46
18	Ecological Genetic Divergence of the Fungal Pathogen <i>Didymella rabiei</i> on Sympatric Wild and Domesticated <i>Cicer</i> spp. (Chickpea). Applied and Environmental Microbiology, 2010, 76, 30-39.	3.1	45

#	Article	IF	CITATIONS
19	Leaf and Canopy Level Detection of Fusarium Virguliforme (Sudden Death Syndrome) in Soybean. Remote Sensing, 2018, 10, 426.	4.0	45
20	Improved Diagnoses and Quantification of <i>Fusarium virguliforme</i> , Causal Agent of Soybean Sudden Death Syndrome. Phytopathology, 2015, 105, 378-387.	2.2	43
21	Host Specificity of Ascochyta spp. Infecting Legumes of the Viciae and Cicerae Tribes and Pathogenicity of an Interspecific Hybrid. Phytopathology, 2006, 96, 1148-1156.	2.2	42
22	Integrated Management of Important Soybean Pathogens of the United States in Changing Climate. Journal of Integrated Pest Management, 2020, 11, .	2.0	41
23	Tar Spot: An Understudied Disease Threatening Corn Production in the Americas. Plant Disease, 2020, 104, 2541-2550.	1.4	38
24	Integrated Effects of Genetic Resistance and Prothioconazole + Tebuconazole Application Timing on Fusarium Head Blight in Wheat. Plant Disease, 2019, 103, 223-237.	1.4	36
25	Detection and Identification of <i>Botrytis</i> Species Associated with Neck Rot, Scape Blight, and Umbel Blight of Onion. Plant Health Progress, 2006, 7, .	1.4	35
26	Significant Influence of EC ₅₀ Estimation by Model Choice and EC ₅₀ Type. Plant Disease, 2018, 102, 708-714.	1.4	35
27	Response of Broadâ€Spectrum and Targetâ€Specific Seed Treatments and Seeding Rate on Soybean Seed Yield, Profitability, and Economic Risk. Crop Science, 2017, 57, 2251-2262.	1.8	34
28	Effect of Glyphosate Application on Sudden Death Syndrome of Glyphosate-Resistant Soybean Under Field Conditions. Plant Disease, 2015, 99, 347-354.	1.4	32
29	Weather-Based Models for Assessing the Risk of <i>Sclerotinia sclerotiorum</i> Apothecial Presence in Soybean (<i>Glycine max</i>) Fields. Plant Disease, 2018, 102, 73-84.	1.4	30
30	Meta-analysis of yield response of foliar fungicide-treated hybrid corn in the United States and Ontario, Canada. PLoS ONE, 2019, 14, e0217510.	2.5	29
31	Identification and function of a polyketide synthase gene responsible for 1,8-dihydroxynaphthalene-melanin pigment biosynthesis in Ascochyta rabiei. Current Genetics, 2010, 56, 349-360.	1.7	28
32	Identification of Fungal Communities Within the Tar Spot Complex of Corn in Michigan via Next-Generation Sequencing. Phytobiomes Journal, 2019, 3, 235-243.	2.7	28
33	Rapid transcriptome characterization and parsing of sequences in a non-model host-pathogen interaction; pea-Sclerotinia sclerotiorum. BMC Genomics, 2012, 13, 668.	2.8	27
34	Defining optimal soybean seeding rates and associated risk across North America. Agronomy Journal, 2020, 112, 2103-2114.	1.8	27
35	Cloning of the mating type locus from Ascochyta lentis (teleomorph: Didymella lentis) and development of a multiplex PCR mating assay for Ascochyta species. Current Genetics, 2006, 50, 203-215.	1.7	26
36	Baseline Sensitivity of <i>Fusarium virguliforme</i> to Fluopyram Fungicide. Plant Disease, 2017, 101, 576-582.	1.4	26

#	Article	IF	CITATIONS
37	Effect of Soybean Cyst Nematode Resistance Source and Seed Treatment on Population Densities of <i>Heterodera glycines</i> , Sudden Death Syndrome, and Yield of Soybean. Plant Disease, 2017, 101, 2137-2143.	1.4	26
38	Benefits and Profitability of Fluopyram-Amended Seed Treatments for Suppressing Sudden Death Syndrome and Protecting Soybean Yield: A Meta-Analysis. Plant Disease, 2018, 102, 1093-1100.	1.4	26
39	Diversity and Characterization of Oomycetes Associated with Corn Seedlings in Michigan. Phytobiomes Journal, 2019, 3, 224-234.	2.7	26
40	Multilaboratory Comparison of Quantitative PCR Assays for Detection and Quantification of <i>Fusarium virguliforme</i> from Soybean Roots and Soil. Phytopathology, 2015, 105, 1601-1611.	2.2	25
41	Effect of Seed Treatment and Foliar Crop Protection Products on Sudden Death Syndrome and Yield of Soybean. Plant Disease, 2019, 103, 1712-1720.	1.4	22
42	Profitability and efficacy of soybean seed treatment in Michigan. Crop Protection, 2018, 114, 44-52.	2.1	21
43	<i>Phyllachora maydis</i> Ascospore Release and Germination from Overwintered Corn Residue. Plant Health Progress, 2020, 21, 26-30.	1.4	21
44	Identification of Pythium insidiosum complex by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Medical Microbiology, 2019, 68, 574-584.	1.8	21
45	Karyotype polymorphism and chromosomal rearrangement in populations of the phytopathogenic fungus, Ascochyta rabiei. Fungal Biology, 2012, 116, 1119-1133.	2.5	20
46	Soybean Sudden Death Syndrome Causal Agent <i>Fusarium brasiliense</i> Present in Michigan. Plant Disease, 2019, 103, 1234-1243.	1.4	20
47	Association of <i>Diaporthe longicolla</i> with Black Zone Lines on Mature Soybean Plants. Plant Health Progress, 2015, 16, 118-122.	1.4	19
48	Integration of sudden death syndrome resistance loci in the soybean genome. Theoretical and Applied Genetics, 2018, 131, 757-773.	3.6	19
49	Fluopyram Sensitivity and Functional Characterization of SdhB in the Fusarium solani Species Complex Causing Soybean Sudden Death Syndrome. Frontiers in Microbiology, 2018, 9, 2335.	3.5	19
50	Temporal Dynamics of <i>Fusarium virguliforme</i> Colonization of Soybean Roots. Plant Disease, 2019, 103, 19-27.	1.4	19
51	Baseline sensitivity of Fusarium graminearum from wheat, corn, dry bean and soybean to pydiflumetofen in Michigan, USA. Crop Protection, 2021, 140, 105419.	2.1	19
52	QTL Analysis of Fusarium Root Rot Resistance in an Andean × Middle American Common Bean RIL Population. Crop Science, 2018, 58, 1166-1180.	1.8	18
53	Convergent Evolution of C239S Mutation in <i>Pythium</i> spp. β-Tubulin Coincides with Inherent Insensitivity to Ethaboxam and Implications for Other Peronosporalean Oomycetes. Phytopathology, 2019, 109, 2087-2095.	2.2	18
54	Meta-Analytic and Economic Approaches for Evaluation of Pesticide Impact on Sclerotinia Stem Rot Control and Soybean Yield in the North Central United States. Phytopathology, 2019, 109, 1157-1170.	2.2	18

#	Article	IF	CITATIONS
55	Resistance to Quinone Outside Inhibitor Fungicides Conferred by the G143A Mutation in <i>Cercospora sojina</i> (Causal Agent of Frogeye Leaf Spot) Isolates from Michigan, Minnesota, and Nebraska Soybean Fields. Plant Health Progress, 2020, 21, 230-231.	1.4	18
56	Non-target impacts of fungicide disturbance on phyllosphere yeasts in conventional and no-till management. ISME Communications, 2022, 2, .	4.2	18
57	Development of sequence characterized amplified genomic regions (SCAR) for fungal systematics: proof of principle using <i>Alternaria</i> , <i>Ascochyta</i> and <i>Tilletia</i> . Mycologia, 2013, 105, 1077-1086.	1.9	17
58	Development and characterization of microsatellite markers for Fusarium virguliforme and their utility within clade 2 of the Fusarium solani species complex. Fungal Ecology, 2016, 20, 7-14.	1.6	17
59	Validating Sclerotinia sclerotiorum Apothecial Models to Predict Sclerotinia Stem Rot in Soybean (Glycine max) Fields. Plant Disease, 2018, 102, 2592-2601.	1.4	17
60	hagis, an R Package Resource for Pathotype Analysis of <i>Phytophthora sojae</i> Populations Causing Stem and Root Rot of Soybean. Molecular Plant-Microbe Interactions, 2019, 32, 1574-1576.	2.6	17
61	QTL mapping and GWAS for identification of loci conferring partial resistance to Pythium sylvaticum in soybean (Glycine max (L.) Merr). Molecular Breeding, 2020, 40, 1.	2.1	16
62	Characterization of mating type genes supports the hypothesis that Stagonosporopsis chrysanthemi is homothallic and provides evidence that Stagonosporopsis tanaceti is heterothallic. Current Genetics, 2014, 60, 295-302.	1.7	15
63	Recombination of Virulence Genes in Divergent Acidovorax avenae Strains That Infect a Common Host. Molecular Plant-Microbe Interactions, 2017, 30, 813-828.	2.6	15
64	Case Study of an Epidemiological Approach Dissecting Historical Soybean Sclerotinia Stem Rot Observations and Identifying Environmental Predictors of Epidemics and Yield Loss. Phytopathology, 2018, 108, 469-478.	2.2	15
65	Inoculation Method Impacts Symptom Development Associated with <i>Diaporthe aspalathi</i> , <i>D. caulivora</i> , and <i>D. longicolla</i> on Soybean (<i>Glycine max</i>). Plant Disease, 2019, 103, 677-684.	1.4	15
66	Exploring the genetics of lesion and nodal resistance in pea (<i>Pisum sativum</i> L.) to <i>Sclerotinia sclerotiorum</i> using genomeâ€wide association studies and <scp>RNA</scp> â€5eq. Plant Direct, 2018, 2, e00064.	1.9	14
67	Mapping Quantitative Trait Loci for Tolerance to Pythium irregulare in Soybean (Glycine max L.). G3: Genes, Genomes, Genetics, 2018, 8, 3155-3161.	1.8	14
68	QTL mapping and epistatic interaction analysis of field resistance to sudden death syndrome (Fusarium) Tj ETQq(0.0 rgBT 3.6 rgBT	/Overlock 10
69	A protoplast generation and transformation method for soybean sudden death syndrome causal agents Fusarium virguliforme and F. brasiliense. Fungal Biology and Biotechnology, 2019, 6, 7.	5.1	14
70	Variation in soybean rhizosphere oomycete communities from Michigan fields with contrasting disease pressures. Applied Soil Ecology, 2020, 150, 103435.	4.3	14
71	Diaporthe Seed Decay of Soybean [<i>Glycine max</i> (L.) Merr.] Is Endemic in the United States, But New Fungi Are Involved. Plant Disease, 2021, 105, 1621-1629.	1.4	14

Different loci associated with root and foliar resistance to sudden death syndrome (Fusarium) Tj ETQq0 0 0 rgBT /Oyerlock 10.17 ± 0.02

#	Article	IF	CITATIONS
73	Multi-location evaluation of fluopyram seed treatment and cultivar on root infection by <i>Fusarium virguliforme</i> , foliar symptom development, and yield of soybean. Canadian Journal of Plant Pathology, 2020, 42, 192-202.	1.4	12
74	Documenting the Establishment, Spread, and Severity of Phyllachora maydis on Corn, in the United States. Journal of Integrated Pest Management, 2020, 11, .	2.0	12
75	First Report of <i>Fusarium brasiliense</i> Causing Root Rot of Dry Bean in the United States. Plant Disease, 2018, 102, 2035.	1.4	12
76	Didymella rabieiprimary inoculum release from chickpea debris in relation to weather variables in the Pacific Northwest of the United States. Canadian Journal of Plant Pathology, 2007, 29, 365-371.	1.4	11
77	Spatiotemporal Distribution Pattern of <i>Sclerotinia sclerotiorum</i> Apothecia is Modulated by Canopy Closure and Soil Temperature in an Irrigated Soybean Field. Plant Disease, 2018, 102, 1794-1802.	1.4	11
78	Characterization of Soybean <i>STAY-GREEN</i> Genes in Susceptibility to Foliar Chlorosis of Sudden Death Syndrome. Plant Physiology, 2019, 180, 711-717.	4.8	11
79	Fluopyram Suppresses Population Densities of <i>Heterodera glycines</i> in Field and Greenhouse Studies in Michigan. Plant Disease, 2020, 104, 1305-1311.	1.4	11
80	Development and characterization of 37 novel EST‣SR markers in <i>Pisum sativum</i> (Fabaceae). Applications in Plant Sciences, 2013, 1, 1200249.	2.1	10
81	A <i>Sclerotinia sclerotiorum</i> Transcription Factor Involved in Sclerotial Development and Virulence on Pea. MSphere, 2019, 4, .	2.9	10
82	A High-Throughput Microtiter-Based Fungicide Sensitivity Assay for Oomycetes Using <i>Z</i> ′-Factor Statistic. Phytopathology, 2019, 109, 1628-1637.	2.2	9
83	Determining the Soilborne Pathogens Associated with Root Rot Disease Complex of Dry Bean in Michigan. Plant Health Progress, 2019, 20, 122-127.	1.4	9
84	Molecular mapping of quantitative disease resistance loci for soybean partial resistance to Phytophthora sansomeana. Theoretical and Applied Genetics, 2021, 134, 1977-1987.	3.6	9
85	Meta-Analysis of Soybean Yield Response to Foliar Fungicides Evaluated from 2005 to 2018 in the United States and Canada. Plant Disease, 2021, 105, 1382-1389.	1.4	9
86	<i>Phytophthora sojae</i> Pathotype Distribution and Fungicide Sensitivity in Michigan. Plant Disease, 2022, 106, 425-431.	1.4	9
87	Characterisation of Botrytis species associated with neck rot of onion in Australia. Australasian Plant Pathology, 2004, 33, 29.	1.0	8
88	Development of codominant simple sequence repeat, single nucleotide polymorphism and sequence characterized amplified region markers for the pea root rot pathogen, Aphanomyces euteiches. Journal of Microbiological Methods, 2007, 71, 82-86.	1.6	8
89	Predicting Soybean Yield and Sudden Death Syndrome Development Using At-Planting Risk Factors. Phytopathology, 2019, 109, 1710-1719.	2.2	8
90	Integration of Row Spacing, Seeding Rates, and Fungicide Applications for Control of Sclerotinia Stem Rot in <i>Glycine max</i> . Plant Disease, 2022, 106, 1183-1191.	1.4	8

#	Article	IF	CITATIONS
91	Identification of Soybean (Glycine max) Check Lines for Evaluating Genetic Resistance to Sclerotinia Stem Rot. Plant Disease, 2020, 105, 2189-2195.	1.4	7
92	Survey for Botrytis species associated with onion bulb rot in northern Tasmania, Australia. Australasian Plant Pathology, 2004, 33, 419.	1.0	6
93	Influence of benzimidazole fungicides on incidence of Botrytis allii infection of onion leaves and subsequent incidence of onion neck rot in storage in Tasmania, Australia. Australian Journal of Experimental Agriculture, 2006, 46, 1661.	1.0	6
94	Diagnostic qPCR Assay to Detect <i>Fusarium brasiliense</i> , a Causal Agent of Soybean Sudden Death Syndrome and Root Rot of Dry Bean. Plant Disease, 2020, 104, 246-254.	1.4	6
95	Effects of Mowing, Seeding Rate, and Foliar Fungicide on Soybean Sclerotinia Stem Rot and Yield. Plant Health Progress, 2021, 22, 129-135.	1.4	6
96	First Report of Ascochyta Blight of Pisum elatius (Wild Pea) in the Republic of Georgia Caused by Ascochyta pisi. Plant Disease, 2007, 91, 326-326.	1.4	6
97	<i>Phyllachora</i> species infecting maize and other grass species in the Americas represents a complex of closely related species. Ecology and Evolution, 2022, 12, e8832.	1.9	6
98	Effect of Seed Treatment on Early Season Brown Spot Caused by Septoria glycines of Soybean. Plant Health Progress, 2016, 17, 223-228.	1.4	5
99	Economic Impact of Fluopyram-Amended Seed Treatments to Reduce Soybean Yield Loss Associated with Sudden Death Syndrome. Plant Disease, 2021, 105, 78-86.	1.4	5
100	Genomeâ€wide transcriptional response of the causal soybean sudden death syndrome pathogen <scp><i>Fusarium virguliforme</i></scp> to a succinate dehydrogenase inhibitor fluopyram. Pest Management Science, 2022, 78, 530-540.	3.4	5
101	Ascochyta blight of chickpea reduced 38% by application of <i>Aureobasidium pullulans</i> (anamorphic Dothioraceae, Dothideales) to post-harvest debris. Biocontrol Science and Technology, 2009, 19, 537-545.	1.3	4
102	Development, characterization and linkage analysis of microsatellite loci for the Ascochyta blight pathogen of faba bean, Didymella fabae. Journal of Microbiological Methods, 2011, 87, 128-130.	1.6	4
103	Linkage Mapping for Foliar Necrosis of Soybean Sudden Death Syndrome. Phytopathology, 2020, 110, 907-915.	2.2	4
104	Relationship Between Sudden Death Syndrome caused by <i>Fusarium virguliforme</i> and Soybean Yield: A Meta-Analysis. Plant Disease, 2020, 104, 1736-1743.	1.4	4
105	A βâ€lactamase gene of <i>Fusarium oxysporum</i> alters the rhizosphere microbiota of soybean. Plant Journal, 2021, 106, 1588-1604.	5.7	4
106	Preliminary evaluation of wild bean (<i>Phaseolus</i> spp.) germplasm for resistance to <i>Fusarium cuneirostrum</i> and <i>Fusarium oxysporum</i> . Crop Science, 2021, 61, 3264-3274.	1.8	4
107	Reduction of Pythium Damping-Off in Soybean by Biocontrol Seed Treatment. Plant Disease, 2022, 106, 2403-2414.	1.4	4
108	Genetic Diversity of <i>Stenocarpella maydis</i> in the Major Corn Production Areas of the United States. Plant Disease, 2017, 101, 2020-2026.	1.4	3

#	Article	IF	CITATIONS
109	Using a Genome-Based PCR Primer Prediction Pipeline to Develop Molecular Diagnostics for the Turfgrass Pathogen <i>Acidovorax avenae</i> . Plant Disease, 2018, 102, 2224-2232.	1.4	3
110	Population Structure of Pythium ultimum from Greenhouse Floral Crops in Michigan. Plant Disease, 2019, 103, 859-867.	1.4	3
111	Root Crown Response to Fungal Root Rot in <i>Phaseolus vulgaris</i> Middle American × Andean Lines. Plant Disease, 2020, 104, 3135-3142.	1.4	3
112	First Report of <i>Fusarium cuneirostrum</i> Causing Root Rot of Common Bean (<i>Phaseolus) Tj ETQq0 0 0 rg</i>	gBT /Overl 1.4	ock 10 Tf 50
113	Comparison Between Prothioconazole and Prothioconazole-Desthio in Poison-Plate Mycelial Growth Assays of Fusarium graminearum. Plant Health Progress, 0, , .	1.4	3
114	Ecology and diversity of culturable fungal species associated with soybean seedling diseases in the Midwestern United States. Journal of Applied Microbiology, 2022, 132, 3797-3811.	3.1	3
115	Annotation resource of tandem repeat-containing secretory proteins in sixty fungi. Fungal Genetics and Biology, 2018, 119, 7-19.	2.1	2
116	Integrating multiple inputs for soft red and white winter wheat. Agronomy Journal, 2021, 113, 4306.	1.8	2
117	Oomicide treated soybean seeds reduce early season stand loss to Phytophthora sojae. Crop Protection, 2022, 157, 105984.	2.1	2
118	Registration of â€~Red Cedar' Dark Red Kidney Bean. Journal of Plant Registrations, 2018, 12, 199-202.	0.5	1
119	Registration of â€~Coho' light red kidney bean. Journal of Plant Registrations, 2020, 14, 134-138.	0.5	1
120	Climatology of persistent high relative humidity: An example for the Lower Peninsula of Michigan, USA. International Journal of Climatology, 2021, 41, E2517.	3.5	1
121	Influence of Soybean Tissue and Oomicide Seed Treatments on Oomycete Isolation. Plant Disease, 2021, 105, 1281-1288.	1.4	1
122	Influence of <i>Fusarium virguliforme</i> Temporal Colonization of Corn, Tillage, and Residue Management on Soybean Sudden Death Syndrome and Soybean Yield. Plant Disease, 2021, 105, 3250-3260.	1.4	0
123	Genetic mapping of host resistance to soybean sudden death syndrome. Crop Science, 0, , .	1.8	0
124	First Report of Southern Rust (Puccinia polysora) on Corn (Zea mays) in Michigan. Plant Disease, 2022, , .	1.4	0