Jianhua Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/183581/publications.pdf Version: 2024-02-01

ПАМНИА СНИ

#	Article	IF	CITATIONS
1	Fundamental Understanding and Research Progress on the Interfacial Behaviors for Potassiumâ€lon Battery Anode. Advanced Science, 2022, 9, e2200683.	11.2	53
2	Carbon Anode Materials: A Detailed Comparison between Naâ€ion and Kâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2003640.	19.5	150
3	Crystal, interfacial and morphological control of electrode materials for nonaqueous potassium-ion batteries. Nano Today, 2021, 37, 101074.	11.9	30
4	Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 1652-1659.	10.3	59
5	Open ZnSe/C nanocages: multi-hierarchy stress-buffer for boosting cycling stability in potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 779-788.	10.3	73
6	A novel graphene-wrapped corals-like NiSe2 for ultrahigh-capacity potassium ion storage. Carbon, 2020, 161, 834-841.	10.3	44
7	Experimental and Numerical Investigation on Surface Damage of Cold Rolled Sheet Caused by Inclusion Movement. Minerals, Metals and Materials Series, 2020, , 239-247.	0.4	0
8	A monocrystal Fe ₃ O ₄ @ultrathin N-doped carbon core/shell structure: from magnetotactic bacteria to Li storage. Journal of Materials Chemistry A, 2019, 7, 20899-20904.	10.3	12
9	High-throughput fabrication of 3D N-doped graphenic framework coupled with Fe3C@porous graphite carbon for ultrastable potassium ion storage. Energy Storage Materials, 2019, 22, 185-193.	18.0	91
10	Deeply Nesting Zinc Sulfide Dendrites in Tertiary Hierarchical Structure for Potassium Ion Batteries: Enhanced Conductivity from Interior to Exterior. ACS Nano, 2019, 13, 6906-6916.	14.6	139
11	Carbon-encapsulated ultrathin MoS ₂ nanosheets epitaxially grown on porous metallic TiNb ₂ O ₆ microspheres with unsaturated oxygen atoms for superior potassium storage. Journal of Materials Chemistry A, 2019, 7, 5760-5768.	10.3	54
12	A carbon microtube array with a multihole cross profile: releasing the stress and boosting long-cycling and high-rate potassium ion storage. Journal of Materials Chemistry A, 2019, 7, 25845-25852.	10.3	36
13	Strong (001) facet-induced growth of multi-hierarchical tremella-like Sn-doped V ₂ O ₅ for high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 25993-26001.	10.3	18
14	Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage. Energy Storage Materials, 2019, 18, 43-50.	18.0	69
15	Sulfur/Oxygen Codoped Porous Hard Carbon Microspheres for Highâ€Performance Potassiumâ€ŀon Batteries. Advanced Energy Materials, 2018, 8, 1800171.	19.5	363
16	Thickness-control of ultrathin bimetallic Fe–Mo selenide@N-doped carbon core/shell "nano-crisps― for high-performance potassium-ion batteries. Applied Materials Today, 2018, 13, 344-351.	4.3	69
17	Multirole organic-induced scalable synthesis of a mesoporous MoS2-monolayer/carbon composite for high-performance lithium and potassium storage. Journal of Materials Chemistry A, 2018, 6, 11147-11153.	10.3	77
18	Metallic Octahedral CoSe ₂ Threaded by Nâ€Doped Carbon Nanotubes: A Flexible Framework for Highâ€Performance Potassiumâ€Ion Batteries. Advanced Science, 2018, 5, 1800782.	11.2	198

Јіанниа Сни

#	Article	IF	CITATIONS
19	Zero-strain K _{0.6} Mn ₁ F _{2.7} hollow nanocubes for ultrastable potassium ion storage. Energy and Environmental Science, 2018, 11, 3033-3042.	30.8	87
20	Bambooâ€Like Hollow Tubes with MoS ₂ /Nâ€Doped Interfaces Boost Potassiumâ€Ion Storage. Advanced Functional Materials, 2018, 28, 1803409.	14.9	263
21	Pistachioâ€Shuckâ€Like MoSe ₂ /C Core/Shell Nanostructures for Highâ€Performance Potassiumâ€Ion Storage. Advanced Materials, 2018, 30, e1801812.	21.0	297