Chenhan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1835804/publications.pdf

Version: 2024-02-01

687363 752698 27 427 13 20 citations h-index g-index papers 27 27 27 564 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Non-monotonic thickness dependent and anisotropic in-plane thermal transport in layered titanium trisulphide. Materials Today Nano, 2022, 17, 100165.	4.6	5
2	Chemical looping combustion of sulfur paste to SO2 by phosphogypsum oxygen carrier for sulfur acid production. Fuel, 2022, 323, 124386.	6.4	13
3	Phonon transport in graphene based materials. Physical Chemistry Chemical Physics, 2021, 23, 26030-26060.	2.8	20
4	Non-Monotonic Thickness Dependent Hydrodynamic Phonon Transport in Layered Titanium Trisulphide: First-Principles Calculation and Improved Callaway Model Fitting. ES Energy & Environments, 2021, , .	1.1	1
5	The effects of contact atom distribution at the interface on the phonon transport. Physical Chemistry Chemical Physics, 2020, 22, 27690-27697.	2.8	3
6	Bidirectional Tuning of Thermal Conductivity in Ferroelectric Materials Using E-Controlled Hysteresis Characteristic Property. Journal of Physical Chemistry C, 2020, 124, 26144-26152.	3.1	23
7	Anomalous layer thickness dependent thermal conductivity of Td-WTe2 through first-principles calculation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126751.	2.1	8
8	The reservoir area dependent thermal transport at the nanoscale interface. Physical Chemistry Chemical Physics, 2020, 22, 22016-22022.	2.8	6
9	The enhancement of heat conduction across the metal/graphite interface treated with a focused ion beam. Nanoscale, 2020, 12, 14838-14846.	5.6	12
10	High ZT 2D Thermoelectrics by Design: Strong Interlayer Vibration and Complete Band‣xtrema Alignment. Advanced Functional Materials, 2020, 30, 2001200.	14.9	32
11	The ignored effects of vibrational entropy and electrocaloric effect in PbTiO3 and PbZr0.5Ti0.5O3 as studied through first-principles calculation. Acta Materialia, 2020, 191, 221-229.	7.9	18
12	Electric-Field-Controlled Thermal Switch in Ferroelectric Materials Using First-Principles Calculations and Domain-Wall Engineering. Physical Review Applied, $2019,11,.$	3.8	42
13	Kink effects on thermal transport in silicon nanowires. International Journal of Heat and Mass Transfer, 2019, 137, 573-578.	4.8	12
14	Computational modeling of ionic currents through difform graphene nanopores with consistent cross-sectional areas. Physical Chemistry Chemical Physics, 2019, 21, 26166-26174.	2.8	5
15	Distinct Signatures of Electron–Phonon Coupling Observed in the Lattice Thermal Conductivity of NbSe ₃ Nanowires. Nano Letters, 2019, 19, 415-421.	9.1	37
16	Thermal Transport in Quasi-1D van der Waals Crystal Ta ₂ Pd ₃ Se ₈ Nanowires: Size and Length Dependence. ACS Nano, 2018, 12, 2634-2642.	14.6	61
17	Transient and steady state heat transport in layered materials from molecular dynamics simulation. International Journal of Heat and Mass Transfer, 2018, 121, 72-78.	4.8	8
18	Large Thermal Conductivity Switch Ratio in Barium Titanate Under Electric Field through Firstâ€Principles Calculation. Advanced Theory and Simulations, 2018, 1, 1800098.	2.8	23

CHENHAN LIU

#	Article	IF	CITATION
19	Electron contributions to the heat conduction across Au/graphene/Au interfaces. Carbon, 2017, 115, 665-671.	10.3	24
20	Axial tensile strain effects on the contact thermal conductance between cross contacted single-walled carbon nanotubes. Journal of Applied Physics, 2017, 121, .	2.5	2
21	Mean free path dependent phonon contributions to interfacial thermal conductance. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1899-1904.	2.1	23
22	Pressure Effects on the Thermal Properties of Graphite. , 2016, , .		0
23	Pressure effects on the thermal resistance of few-layer graphene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 248-254.	2.1	16
24	Effects of interfacial roughness on phonon transport in bilayer silicon thin films. Physical Review B, 2015, 92, .	3.2	14
25	Influence of coherent optical phonon on ultrafast energy relaxation. Applied Physics Letters, 2015, 107, 063107.	3.3	4
26	The contact area dependent interfacial thermal conductance. AIP Advances, 2015, 5, .	1.3	10
27	Cross-plane phonon transport properties of molybdenum disulphide. Journal Physics D: Applied Physics, 2015, 48, 465303.	2.8	5