
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1834915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Reversible Zn Metal Anode Stabilized by Dense and Anionâ€Derived Passivation Layer Obtained from Concentrated Hybrid Aqueous Electrolyte. Advanced Functional Materials, 2022, 32, 2103959.	14.9	48
2	High-precision tumor resection down to few-cell level guided by NIR-IIb molecular fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123111119.	7.1	26
3	Probing dissolved CO ₂ (aq) in aqueous solutions for CO ₂ electroreduction and storage. Science Advances, 2022, 8, eabo0399.	10.3	17
4	In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nature Nanotechnology, 2022, 17, 653-660.	31.5	88
5	In vivo NIR-II structured-illumination light-sheet microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	39
6	Selective and High Current CO ₂ Electro-Reduction to Multicarbon Products in Near-Neutral KCl Electrolytes. Journal of the American Chemical Society, 2021, 143, 3245-3255.	13.7	108
7	Rational Design of High Brightness NIR-II Organic Dyes with S-D-A-D-S Structure. Accounts of Materials Research, 2021, 2, 170-183.	11.7	84
8	Carbon Nanotubes—Potent Carriers for Targeted Drug Delivery in Rheumatoid Arthritis. Pharmaceutics, 2021, 13, 453.	4.5	23
9	Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature, 2021, 596, 525-530.	27.8	103
10	Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nature Electronics, 2021, 4, 653-663.	26.0	61
11	Tuning Dynamically Formed Active Phases and Catalytic Mechanisms of <i>In Situ</i> Electrochemically Activated Layered Double Hydroxide for Oxygen Evolution Reaction. ACS Nano, 2021, 15, 14996-15006.	14.6	56
12	Deep learning for in vivo near-infrared imaging. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	53
13	Ionic Liquid Analogs of AlCl ₃ with Urea Derivatives as Electrolytes for Aluminum Batteries. Advanced Functional Materials, 2020, 30, 1901928.	14.9	74
14	Crossâ€Linkâ€Functionalized Nanoparticles for Rapid Excretion in Nanotheranostic Applications. Angewandte Chemie, 2020, 132, 20733-20741.	2.0	6
15	Crossâ€Linkâ€Functionalized Nanoparticles for Rapid Excretion in Nanotheranostic Applications. Angewandte Chemie - International Edition, 2020, 59, 20552-20560.	13.8	35
16	Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nature Energy, 2020, 5, 684-692.	39.5	365
17	A high-performance potassium metal battery using safe ionic liquid electrolyte. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27847-27853.	7.1	49
18	Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS Applied Energy Materials, 2020, 3, 10722-10733.	5.1	26

#	Article	IF	CITATIONS
19	Quantification of antibody avidities and accurate detection of SARS-CoV-2 antibodies in serum and saliva on plasmonic substrates. Nature Biomedical Engineering, 2020, 4, 1188-1196.	22.5	77
20	Diagnosis and prognosis of myocardial infarction on a plasmonic chip. Nature Communications, 2020, 11, 1654.	12.8	83
21	Electrochemical transformation reaction of Cu–MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life. Journal of Materials Chemistry A, 2020, 8, 17595-17607.	10.3	93
22	Hierarchical 3D Architectured Ag Nanowires Shelled with NiMn-Layered Double Hydroxide as an Efficient Bifunctional Oxygen Electrocatalyst. ACS Nano, 2020, 14, 1770-1782.	14.6	145
23	Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nature Biomedical Engineering, 2020, 4, 325-334.	22.5	160
24	High-Rate and Long-Cycle Stability with a Dendrite-Free Zinc Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes. ACS Applied Energy Materials, 2020, 3, 4499-4508.	5.1	95
25	Electroreduction of CO ₂ to Formate on a Copper-Based Electrocatalyst at High Pressures with High Energy Conversion Efficiency. Journal of the American Chemical Society, 2020, 142, 7276-7282.	13.7	165
26	A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Research, 2020, 13, 1281-1294.	10.4	105
27	Highâ€Safety and Highâ€Energyâ€Density Lithium Metal Batteries in a Novel Ionicâ€Liquid Electrolyte. Advanced Materials, 2020, 32, e2001741.	21.0	176
28	Effects of Concentrated Salt and Resting Protocol on Solid Electrolyte Interface Formation for Improved Cycle Stability of Anode-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 31962-31971.	8.0	58
29	A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte. Nature Communications, 2019, 10, 3302.	12.8	173
30	The Nano Research Young Innovators (NR45) Awards in nanoenergy. Nano Research, 2019, 12, 1975-1977.	10.4	1
31	Plasmonic gold chips for the diagnosis of Toxoplasma gondii, CMV, and rubella infections using saliva with serum detection precision. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 883-890.	2.9	22
32	Light-sheet microscopy in the near-infrared II window. Nature Methods, 2019, 16, 545-552.	19.0	151
33	Molecular Imaging in the Second Nearâ€Infrared Window. Advanced Functional Materials, 2019, 29, 1900566.	14.9	125
34	Rechargeable aluminum batteries: effects of cations in ionic liquid electrolytes. RSC Advances, 2019, 9, 11322-11330.	3.6	66
35	Nearâ€Infraredâ€II Molecular Dyes for Cancer Imaging and Surgery. Advanced Materials, 2019, 31, e1900321.	21.0	631
36	Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the United States of America, 2019, 116, 6624-6629.	7.1	524

#	Article	IF	CITATIONS
37	A general route <i>via</i> formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy and Environmental Science, 2019, 12, 1317-1325.	30.8	290
38	An electrodeposition approach to metal/metal oxide heterostructures for active hydrogen evolution catalysts in near-neutral electrolytes. Nano Research, 2019, 12, 1431-1435.	10.4	31
39	Circulating Tumor Cells: Magnetic "Squashing―of Circulating Tumor Cells on Plasmonic Substrates for Ultrasensitive NIR Fluorescence Detection (Small Methods 2/2019). Small Methods, 2019, 3, 1970004.	8.6	5
40	Highly active oxygen evolution integrated with efficient CO ₂ to CO electroreduction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23915-23922.	7.1	58
41	In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-Ilb rare-earth nanoparticles. Nature Biotechnology, 2019, 37, 1322-1331.	17.5	398
42	Stabilizing Lithium into Cross‧tacked Nanotube Sheets with an Ultraâ€High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie - International Edition, 2019, 58, 2437-2442.	13.8	111
43	Stabilizing Lithium into Crossâ€Stacked Nanotube Sheets with an Ultraâ€High Specific Capacity for Lithium Oxygen Batteries. Angewandte Chemie, 2019, 131, 2459-2464.	2.0	18
44	Magnetic "Squashing―of Circulating Tumor Cells on Plasmonic Substrates for Ultrasensitive NIR Fluorescence Detection. Small Methods, 2019, 3, 1800474.	8.6	52
45	Site Activity and Population Engineering of NiRu-Layered Double Hydroxide Nanosheets Decorated with Silver Nanoparticles for Oxygen Evolution and Reduction Reactions. ACS Catalysis, 2019, 9, 117-129.	11.2	103
46	A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Research, 2019, 12, 273-279.	10.4	86
47	Molecular Cancer Imaging in the Second Nearâ€Infrared Window Using a Renalâ€Excreted NIRâ€I Fluorophoreâ€Peptide Probe. Advanced Materials, 2018, 30, e1800106.	21.0	115
48	Donor Engineering for NIR-II Molecular Fluorophores with Enhanced Fluorescent Performance. Journal of the American Chemical Society, 2018, 140, 1715-1724.	13.7	379
49	3D NIRâ€II Molecular Imaging Distinguishes Targeted Organs with Highâ€Performance NIRâ€II Bioconjugates. Advanced Materials, 2018, 30, e1705799.	21.0	150
50	A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nature Communications, 2018, 9, 1171.	12.8	353
51	The inaugural Nano Research Young Innovators (NR45) Award in nanobiotechnology. Nano Research, 2018, 11, 4931-4935.	10.4	5
52	Developing a Bright NIRâ€II Fluorophore with Fast Renal Excretion and Its Application in Molecular Imaging of Immune Checkpoint PD‣1. Advanced Functional Materials, 2018, 28, 1804956.	14.9	85
53	An operando X-ray diffraction study of chloroaluminate anion-graphite intercalation in aluminum batteries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5670-5675.	7.1	109
54	Nearâ€Infrared IIb Fluorescence Imaging of Vascular Regeneration with Dynamic Tissue Perfusion Measurement and High Spatial Resolution. Advanced Functional Materials, 2018, 28, 1803417.	14.9	107

#	Article	IF	CITATIONS
55	Bright quantum dots emitting at â^1⁄41,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6590-6595.	7.1	310
56	Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 962-967.	7.1	230
57	High Coulombic efficiency aluminum-ion battery using an AlCl ₃ -urea ionic liquid analog electrolyte. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 834-839.	7.1	306
58	Rational Design of Molecular Fluorophores for Biological Imaging in the NIRâ€II Window. Advanced Materials, 2017, 29, 1605497.	21.0	356
59	Near-infrared fluorophores for biomedical imaging. Nature Biomedical Engineering, 2017, 1, .	22.5	1,982
60	Direct Evidence for Coupled Surface and Concentration Quenching Dynamics in Lanthanide-Doped Nanocrystals. Journal of the American Chemical Society, 2017, 139, 3275-3282.	13.7	420
61	Diagnosis of Zika virus infection on a nanotechnology platform. Nature Medicine, 2017, 23, 548-550.	30.7	130
62	Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chemical Science, 2017, 8, 3703-3711.	7.4	96
63	Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nature Communications, 2017, 8, 14283.	12.8	453
64	A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nature Communications, 2017, 8, 15269.	12.8	458
65	Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive heart disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7089-7094.	7.1	30
66	Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nature Communications, 2017, 8, 737.	12.8	416
67	Identification of the physical origin behind disorder, heterogeneity, and reconstruction and their correlation with the photoluminescence lifetime in hybrid perovskite thin films. Journal of Materials Chemistry A, 2017, 5, 21002-21015.	10.3	10
68	Proteoliposome-based full-length ZnT8 self-antigen for type 1 diabetes diagnosis on a plasmonic platform. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10196-10201.	7.1	31
69	A novel quantitative microarray antibody capture assay identifies an extremely high hepatitis delta virus prevalence among hepatitis B virus–infected mongolians. Hepatology, 2017, 66, 1739-1749.	7.3	74
70	Validation of IgG, IgM multiplex plasmonic gold platform in French clinical cohorts for the serodiagnosis and follow-up of Toxoplasma gondii infection. Diagnostic Microbiology and Infectious Disease, 2017, 87, 213-218.	1.8	24
71	Traumatic Brain Injury Imaging in the Second Nearâ€Infrared Window with a Molecular Fluorophore. Advanced Materials, 2016, 28, 6872-6879.	21.0	311
72	Hybrid anisotropic nanostructures for dual-modal cancer imaging and image-guided chemo-thermo therapies. Biomaterials, 2016, 103, 265-277.	11.4	42

#	Article	IF	CITATIONS
73	Visible to Near-Infrared Fluorescence Enhanced Cellular Imaging on Plasmonic Gold Chips. Small, 2016, 12, 457-465.	10.0	33
74	Multiplexed Anti-Toxoplasma IgG, IgM, and IgA Assay on Plasmonic Gold Chips: towards Making Mass Screening Possible with Dye Test Precision. Journal of Clinical Microbiology, 2016, 54, 1726-1733.	3.9	29
75	High Performance, Multiplexed Lung Cancer Biomarker Detection on a Plasmonic Gold Chip. Advanced Functional Materials, 2016, 26, 7994-8002.	14.9	84
76	3D Graphitic Foams Derived from Chloroaluminate Anion Intercalation for Ultrafast Aluminumâ€lon Battery. Advanced Materials, 2016, 28, 9218-9222.	21.0	302
77	Diagnostics: High Performance, Multiplexed Lung Cancer Biomarker Detection on a Plasmonic Gold Chip (Adv. Funct. Mater. 44/2016). Advanced Functional Materials, 2016, 26, 7993-7993.	14.9	5
78	3D Freezeâ€Casting of Cellular Graphene Films for Ultrahighâ€Powerâ€Density Supercapacitors. Advanced Materials, 2016, 28, 6719-6726.	21.0	390
79	In Vivo Fluorescence Imaging in the Second Near-Infrared Window Using Carbon Nanotubes. Methods in Molecular Biology, 2016, 1444, 167-181.	0.9	20
80	A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Research, 2016, 9, 28-46.	10.4	773
81	A small-molecule dye for NIR-II imaging. Nature Materials, 2016, 15, 235-242.	27.5	1,314
82	Single Chirality (6,4) Singleâ€Walled Carbon Nanotubes for Fluorescence Imaging with Silicon Detectors. Small, 2015, 11, 6325-6330.	10.0	26
83	Energy Migration Engineering of Bright Rareâ€Earth Upconversion Nanoparticles for Excitation by Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 6418-6422.	21.0	89
84	Blending Cr ₂ O ₃ into a NiO–Ni Electrocatalyst for Sustained Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 11989-11993.	13.8	172
85	Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chemical Reviews, 2015, 115, 10816-10906.	47.7	1,151
86	Nickel-coated silicon photocathode for water splitting in alkaline electrolytes. Nano Research, 2015, 8, 1577-1583.	10.4	63
87	Graphene: Graphene Nanoribbons Under Mechanical Strain (Adv. Mater. 2/2015). Advanced Materials, 2015, 27, 392-392.	21.0	3
88	Diketopyrrolopyrrole (DPP)â€Based Donor–Acceptor Polymers for Selective Dispersion of Largeâ€Diameter Semiconducting Carbon Nanotubes. Small, 2015, 11, 2946-2954.	10.0	47
89	An ultrafast rechargeable aluminium-ion battery. Nature, 2015, 520, 324-328.	27.8	1,970
90	Biological imaging without autofluorescence in the second near-infrared region. Nano Research, 2015, 8, 3027-3034.	10.4	263

#	Article	IF	CITATIONS
91	Fluorescence Imaging In Vivo at Wavelengths beyond 1500â€nm. Angewandte Chemie - International Edition, 2015, 54, 14758-14762.	13.8	310
92	Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 2015, 6, 10035.	12.8	466
93	A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research, 2015, 8, 23-39.	10.4	1,201
94	Near-Infrared II Fluorescence for Imaging Hindlimb Vessel Regeneration With Dynamic Tissue Perfusion Measurement. Circulation: Cardiovascular Imaging, 2014, 7, 517-525.	2.6	88
95	Innenrücktitelbild: Ultrathin WS2Nanoflakes as a High-Performance Electrocatalyst for the Hydrogen Evolution Reaction (Angew. Chem. 30/2014). Angewandte Chemie, 2014, 126, 8091-8091.	2.0	2
96	Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 2014, 5, 4695.	12.8	1,413
97	Through-skull fluorescence imaging of the brain in a new near-infrared window. Nature Photonics, 2014, 8, 723-730.	31.4	829
98	A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nature Medicine, 2014, 20, 948-953.	30.7	142
99	Plasmonic micro-beads for fluorescence enhanced, multiplexed protein detection with flow cytometry. Chemical Science, 2014, 5, 4070-4075.	7.4	38
100	Ly108 expression distinguishes subsets of invariant NKT cells that help autoantibody production and secrete IL-21 from those that secrete IL-17 in lupus prone NZB/W mice. Journal of Autoimmunity, 2014, 50, 87-98.	6.5	20
101	Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nature Communications, 2014, 5, 4206.	12.8	470
102	Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy and Environmental Science, 2014, 7, 2025.	30.8	265
103	Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Research, 2013, 6, 113-120.	10.4	42
104	WS2 nanoflakes from nanotubes for electrocatalysis. Nano Research, 2013, 6, 921-928.	10.4	103
105	Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Research, 2012, 5, 718-725.	10.4	104
106	Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy and Environmental Science, 2012, 5, 7931.	30.8	393
107	Densely aligned graphene nanoribbons at â^1⁄435 nm pitch. Nano Research, 2012, 5, 292-296.	10.4	30
108	Short channel field-effect transistors from highly enriched semiconducting carbon nanotubes. Nano Research, 2012, 5, 388-394.	10.4	40

7

#	Article	IF	CITATIONS
109	Spatially resolving edge states of chiral grapheneÂnanoribbons. Nature Physics, 2011, 7, 616-620.	16.7	628
110	Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Research, 2011, 4, 729-736.	10.4	390
111	Multifunctional FeCo-graphitic carbon nanocrystals for combined imaging, drug delivery and tumor-specific photothermal therapy in mice. Nano Research, 2011, 4, 1248-1260.	10.4	63
112	TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Research, 2010, 3, 701-705.	10.4	693
113	Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material. Nano Research, 2010, 3, 8-15.	10.4	63
114	Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Research, 2010, 3, 387-394.	10.4	167
115	Edge magnetotransport fingerprints in disordered graphene nanoribbons. Physical Review B, 2010, 82, .	3.2	63
116	Chemical self-assembly of graphene sheets. Nano Research, 2009, 2, 336-342.	10.4	80
117	Multilayer graphene nanoribbon for 3D stacking of the transistor channel. , 2009, , .		1
118	Carrier scattering in graphene nanoribbon field-effect transistors. Applied Physics Letters, 2008, 92, .	3.3	40
119	Theoretical Investigations on Thermal Light Emission From Metallic Carbon Nanotubes. IEEE Nanotechnology Magazine, 2007, 6, 682-687.	2.0	3
120	Quantum Capacitance Measurement for SWNT FET with Thin ALD High-k Dielectric. Device Research Conference, IEEE Annual, 2007, , .	0.0	0
121	ELECTRICAL TRANSPORT PROPERTIES AND FIELD EFFECT TRANSISTORS OF CARBON NANOTUBES. Nano, 2006, 01, 1-13.	1.0	142
122	Carbon nanotube electronics. , 2006, , .		13
123	Carbon Nanotubes: From Growth, Placement and Assembly Control to 60mV/decade and Sub-60 mV/decade Tunnel Transistors. , 2006, , .		14
124	Single walled carbon nanotubes for transport and delivery of biological cargos. Physica Status Solidi (B): Basic Research, 2006, 243, 3561-3566.	1.5	84
125	Electron beam stimulated field-emission from single-walled carbon nanotubes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 3124.	1.6	15
126	The Role of Metal Catalyst in Near Ambient Hydrogen Adsorption on Multi-walled Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2004, 837, 51.	0.1	2

#	Article	IF	CITATIONS
127	Scanning electron microscopy of field-emitting individual single-walled carbon nanotubes. Applied Physics Letters, 2004, 85, 112-114.	3.3	18
128	Electric-field-directed growth of carbon nanotubes in two dimensions. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 3421.	1.6	46
129	Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics. Nano Letters, 2004, 4, 447-450.	9.1	498
130	Efficient Formation of Iron Nanoparticle Catalysts on Silicon Oxide by Hydroxylamine for Carbon Nanotube Synthesis and Electronics. Nano Letters, 2003, 3, 157-161.	9.1	90
131	Hysteresis Caused by Water Molecules in Carbon Nanotube Field-Effect Transistors. Nano Letters, 2003, 3, 193-198.	9.1	890
132	Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Applied Physics Letters, 2002, 81, 913-915.	3.3	237
133	Electrical properties and devices of large-diameter single-walled carbon nanotubes. Applied Physics Letters, 2002, 80, 1064-1066.	3.3	118
134	Wafer scale production of carbon nanotube scanning probe tips for atomic force microscopy. Applied Physics Letters, 2002, 80, 2225-2227.	3.3	133
135	Delivery of Catalytic Metal Species onto Surfaces with Dendrimer Carriers for the Synthesis of Carbon Nanotubes with Narrow Diameter Distribution. Journal of Physical Chemistry B, 2002, 106, 12361-12365.	2.6	129
136	Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Applied Physics Letters, 2002, 81, 3464-3466.	3.3	280
137	Synthesis of Ultralong and High Percentage of Semiconducting Single-walled Carbon Nanotubes. Nano Letters, 2002, 2, 703-708.	9.1	188
138	Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition. Nano Letters, 2002, 2, 285-288.	9.1	878
139	Carbon Nanotubes:  Synthesis, Integration, and Properties. Accounts of Chemical Research, 2002, 35, 1035-1044.	15.6	1,776
140	Patterned growth of single-walled carbon nanotubes on full 4-inch wafers. Applied Physics Letters, 2001, 79, 4571-4573.	3.3	195
141	Full and Modulated Chemical Gating of Individual Carbon Nanotubes by Organic Amine Compounds. Journal of Physical Chemistry B, 2001, 105, 2890-2893.	2.6	339
142	Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes. Journal of Physical Chemistry B, 2001, 105, 11424-11431.	2.6	648
143	Polymer Functionalization for Air-Stable n-Type Carbon Nanotube Field-Effect Transistors. Journal of the American Chemical Society, 2001, 123, 11512-11513.	13.7	570
144	Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization. Journal of the American Chemical Society, 2001, 123, 3838-3839.	13.7	2,472

#	Article	IF	CITATIONS
145	Electric-field-directed growth of aligned single-walled carbon nanotubes. Applied Physics Letters, 2001, 79, 3155-3157.	3.3	568
146	Molecular photodesorption from single-walled carbon nanotubes. Applied Physics Letters, 2001, 79, 2258-2260.	3.3	357
147	Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters. Applied Physics Letters, 2000, 76, 1597-1599.	3.3	220
148	Modulated Chemical Doping of Individual Carbon Nanotubes. , 2000, 290, 1552-1555.		619
149	Formation of metal nanowires on suspended single-walled carbon nanotubes. Applied Physics Letters, 2000, 77, 3015-3017.	3.3	363
150	Alkaline metal-doped n-type semiconducting nanotubes as quantum dots. Applied Physics Letters, 2000, 77, 3977-3979.	3.3	126
151	Controllable Reversibility of ansp2tosp3Transition of a Single Wall Nanotube under the Manipulation of an AFM Tip: A Nanoscale Electromechanical Switch?. Physical Review Letters, 2000, 84, 4950-4953.	7.8	96
152	Gating individual nanotubes and crosses with scanning probes. Applied Physics Letters, 2000, 76, 2412-2414.	3.3	46
153	Carbon nanotubes as AFM tips: measuring DNA molecules at the liquid/solid interface. Surface and Interface Analysis, 1999, 28, 8-11.	1.8	82
154	Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes. Applied Physics Letters, 1999, 75, 627-629.	3.3	272
155	Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science, 1999, 283, 512-514.	12.6	2,944
156	Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 1999, 103, 6484-6492.	2.6	825
157	Controlled Chemical Routes to Nanotube Architectures, Physics, and Devices. Journal of Physical Chemistry B, 1999, 103, 11246-11255.	2.6	216
158	Advancements in complementary carbon nanotube field-effect transistors. , 0, , .		34