David Orozco Suarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1834778/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A modified Milne-Eddington approximation for a qualitative interpretation of chromospheric spectral lines. Astronomy and Astrophysics, 2022, 659, A156.	5.1	2
2	DeSIRe: Departure coefficient aided Stokes Inversion based on Response functions. Astronomy and Astrophysics, 2022, 660, A37.	5.1	19
3	The Solar Internetwork. III. Unipolar versus Bipolar Flux Appearance. Astrophysical Journal, 2022, 925, 188.	4.5	6
4	Enhanced Channel Calibration for the Image Sensor of the TuMag Instrument. Sensors, 2022, 22, 2078.	3.8	1
5	The magnetic drivers of campfires seen by the Polarimetric and Helioseismic Imager (PHI) on Solar Orbiter. Astronomy and Astrophysics, 2022, 660, A143.	5.1	14
6	On Fabry–Pérot Etalon-based Instruments. IV. Analytical Formulation of Telecentric Etalons. Astrophysical Journal, Supplement Series, 2021, 254, 18.	7.7	3
7	Machine learning initialization to accelerate Stokes profile inversions. Astronomy and Astrophysics, 2021, 651, A31.	5.1	16
8	Diagnostic capabilities of spectropolarimetric observations for understanding solar phenomena. Astronomy and Astrophysics, 2021, 652, A161.	5.1	8
9	Probing Upflowing Regions in the Quiet Sun and Coronal Holes. Solar Physics, 2021, 296, 175.	2.5	4
10	The Polarimetric and Helioseismic Imager on Solar Orbiter. Astronomy and Astrophysics, 2020, 642, A11.	5.1	121
11	On Fabry–Pérot Etalon-based Instruments. III. Instrument Applications. Astrophysical Journal, Supplement Series, 2020, 246, 17.	7.7	4
12	Models and data analysis tools for the Solar Orbiter mission. Astronomy and Astrophysics, 2020, 642, A2.	5.1	53
13	Coordination within the remote sensing payload on the Solar Orbiter mission. Astronomy and Astrophysics, 2020, 642, A6.	5.1	27
14	Power spectrum of turbulent convection in the solar photosphere. Astronomy and Astrophysics, 2020, 644, A44.	5.1	5
15	The Solar Orbiter Science Activity Plan. Astronomy and Astrophysics, 2020, 642, A3.	5.1	67
16	Sunrise Chromospheric Infrared SpectroPolarimeter (SCIP) for sunrise III: system design and capability. , 2020, , .		7
17	Temporal evolution of short-lived penumbral microjets. Astronomy and Astrophysics, 2020, 642, A128.	5.1	5
18	On Fabry–Pérot Etalon-based Instruments. II. The Anisotropic (Birefringent) Case. Astrophysical Journal, Supplement Series, 2019, 242, 21.	7.7	5

DAVID OROZCO SUAREZ

#	Article	IF	CITATIONS
19	Quiet Sun magnetic fields: an observational view. Living Reviews in Solar Physics, 2019, 16, 1.	22.0	93
20	On Fabry–Pérot Etalon-based Instruments. I. The Isotropic Case. Astrophysical Journal, Supplement Series, 2019, 241, 9.	7.7	11
21	Polarimetric Observations of the Sun. Astrophysics and Space Science Library, 2019, , 147-172.	2.7	1
22	SOPHISM: An End-to-end Software Instrument Simulator. Astrophysical Journal, Supplement Series, 2018, 237, 35.	7.7	5
23	Study of the polarization produced by the Zeeman effect in the solar Mg iÂb lines. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5675-5686.	4.4	8
24	Solar polarimetry in the KÂl <i>D</i> ₂ line : A novel possibility for a stratospheric balloon. Astronomy and Astrophysics, 2018, 610, A79.	5.1	5
25	The quick RTE inversion on FPGA for DKIST. , 2018, , .		0
26	Autonomous on-board data processing and instrument calibration software for the SO/PHI. , 2018, , .		1
27	Image compression on reconfigurable FPGA for the SO/PHI space instrument. , 2018, , .		1
28	The Second Flight of the Sunrise Balloon-borne Solar Observatory: Overview of Instrument Updates, the Flight, the Data, and First Results. Astrophysical Journal, Supplement Series, 2017, 229, 2.	7.7	80
29	Photospheric Response to an Ellerman Bomb-like Event—An Analogy of Sunrise/IMaX Observations and MHD Simulations. Astrophysical Journal, Supplement Series, 2017, 229, 5.	7.7	16
30	Kinematics of Magnetic Bright Features in the Solar Photosphere. Astrophysical Journal, Supplement Series, 2017, 229, 8.	7.7	12
31	Spectropolarimetric Evidence for a Siphon Flow along an Emerging Magnetic Flux Tube. Astrophysical Journal, Supplement Series, 2017, 229, 15.	7.7	6
32	A Tale of Two Emergences: Sunrise II Observations of Emergence Sites in a Solar Active Region. Astrophysical Journal, Supplement Series, 2017, 229, 3.	7.7	28
33	Magneto-static Modeling from Sunrise/IMaX: Application to an Active Region Observed with Sunrise II. Astrophysical Journal, Supplement Series, 2017, 229, 18.	7.7	21
34	A New MHD-assisted Stokes Inversion Technique. Astrophysical Journal, Supplement Series, 2017, 229, 16.	7.7	23
35	Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields. Astrophysical Journal, Supplement Series, 2017, 229, 4.	7.7	64
36	Moving Magnetic Features Around a Pore. Astrophysical Journal, Supplement Series, 2017, 229, 13.	7.7	7

#	Article	IF	CITATIONS
37	Solar polarimetry through the K i lines at 770Ânm. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1453-1461.	4.4	16
38	Chromospheric polarimetry through multiline observations of the 850-nm spectral region – II. A magnetic flux tube scenario. Monthly Notices of the Royal Astronomical Society, 2017, 472, 727-737.	4.4	13
39	Oscillations on Width and Intensity of Slender Ca ii H Fibrils from Sunrise/SuFI. Astrophysical Journal, Supplement Series, 2017, 229, 7.	7.7	25
40	Slender Ca ii H Fibrils Mapping Magnetic Fields in the Low Solar Chromosphere. Astrophysical Journal, Supplement Series, 2017, 229, 11.	7.7	34
41	Morphological Properties of Slender Ca H Fibrils Observed by Sunrise II. Astrophysical Journal, Supplement Series, 2017, 229, 6.	7.7	15
42	Transverse Oscillations in Slender Ca ii H Fibrils Observed with Sunrise/SuFI. Astrophysical Journal, Supplement Series, 2017, 229, 9.	7.7	39
43	Detection of emission in the Si l 1082.7 nm line core in sunspot umbrae. Astronomy and Astrophysic 2017, 607, A102.	25. 5.1	5
44	The Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun. Astrophysical Journal, Supplement Series, 2017, 233, 5.	7.7	3
45	Fitting peculiar spectral profiles in He <scp>I</scp> 10830 Ã absorption features. Astronomische Nachrichten, 2016, 337, 1057-1063.	1.2	12
46	Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope. Astronomische Nachrichten, 2016, 337, 1050-1056.	1.2	9
47	Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396. Astronomische Nachrichten, 2016, 337, 1090-1098.	1.2	1
48	Deep probing of the photospheric sunspot penumbra: no evidence of field-free gaps. Astronomy and Astrophysics, 2016, 596, A2.	5.1	29
49	Probing deep photospheric layers of the quiet Sun with high magnetic sensitivity. Astronomy and Astrophysics, 2016, 596, A6.	5.1	28
50	THE SOLAR INTERNETWORK. II. FLUX APPEARANCE AND DISAPPEARANCE RATES. Astrophysical Journal, 2016, 820, 35.	4.5	41
51	Flows along arch filaments observed in the GRIS â€~very fast spectroscopic mode'. Proceedings of the International Astronomical Union, 2016, 12, 28-33.	0.0	0
52	Upper chromospheric magnetic field of a sunspot penumbra: observations of fine structure. Astronomy and Astrophysics, 2016, 596, A8.	5.1	20
53	Three-dimensional structure of a sunspot light bridge. Astronomy and Astrophysics, 2016, 596, A59.	5.1	41
54	Spatial deconvolution of spectropolarimetric data: an application to quiet Sun magnetic elements. Astronomy and Astrophysics, 2015, 579, A3.	5.1	28

#	Article	IF	CITATIONS
55	HEIGHT VARIATION OF THE VECTOR MAGNETIC FIELD IN SOLAR SPICULES. Astrophysical Journal Letters, 2015, 803, L18.	8.3	24
56	Pair separation of magnetic elements in the quiet Sun. Astronomy and Astrophysics, 2014, 569, A121.	5.1	24
57	THE SOLAR INTERNETWORK. I. CONTRIBUTION TO THE NETWORK MAGNETIC FLUX. Astrophysical Journal, 2014, 797, 49.	4.5	80
58	TIME EVOLUTION OF PLASMA PARAMETERS DURING THE RISE OF A SOLAR PROMINENCE INSTABILITY. Astrophysical Journal Letters, 2014, 785, L10.	8.3	11
59	The magnetic field configuration of a solar prominence inferred from spectropolarimetric observations in the He i 10 830 à triplet. Astronomy and Astrophysics, 2014, 566, A46.	5.1	50
60	Photospheric downward plasma motions in the quiet Sun. Astronomy and Astrophysics, 2014, 566, A139.	5.1	10
61	High speed magnetized flows in the quiet Sun. Astronomy and Astrophysics, 2014, 569, A73.	5.1	12
62	DIFFUSION OF SOLAR MAGNETIC ELEMENTS UP TO SUPERGRANULAR SPATIAL AND TEMPORAL SCALES. Astrophysical Journal Letters, 2013, 770, L36.	8.3	31
63	A first look into the magnetic field configuration of prominence threads using spectropolarimetric data. Proceedings of the International Astronomical Union, 2013, 8, 112-116.	0.0	0
64	EVIDENCE FOR ROTATIONAL MOTIONS IN THE FEET OF A QUIESCENT SOLAR PROMINENCE. Astrophysical Journal Letters, 2012, 761, L25.	8.3	43
65	THE DISTRIBUTION OF QUIET-SUN MAGNETIC FIELDS AT DIFFERENT HELIOCENTRIC ANGLES. Astrophysical Journal, 2012, 746, 182.	4.5	17
66	PERVASIVE LINEAR POLARIZATION SIGNALS IN THE QUIET SUN. Astrophysical Journal, 2012, 757, 19.	4.5	33
67	THE CONNECTION BETWEEN INTERNETWORK MAGNETIC ELEMENTS AND SUPERGRANULAR FLOWS. Astrophysical Journal Letters, 2012, 758, L38.	8.3	44
68	POWER SPECTRA OF VELOCITIES AND MAGNETIC FIELDS ON THE SOLAR SURFACE AND THEIR DEPENDENCE ON THE UNSIGNED MAGNETIC FLUX DENSITY. Astrophysical Journal, 2012, 758, 139.	4.5	21
69	ANALYSIS OF QUIET-SUN INTERNETWORK MAGNETIC FIELDS BASED ON LINEAR POLARIZATION SIGNALS. Astrophysical Journal, 2012, 751, 2.	4.5	45
70	MODEL SELECTION FOR SPECTROPOLARIMETRIC INVERSIONS. Astrophysical Journal, 2012, 748, 83.	4.5	18
71	POLAR FIELD REVERSAL OBSERVATIONS WITH <i>HINODE </i> . Astrophysical Journal, 2012, 753, 157.	4.5	72
72	The Imaging Magnetograph eXperiment (IMaX) forÂtheÂSunrise Balloon-Borne Solar Observatory. Solar Physics, 2011, 268, 57-102.	2.5	229

DAVID OROZCO SUAREZ

#	Article	IF	CITATIONS
73	ON SPECTROPOLARIMETRIC MEASUREMENTS WITH VISIBLE LINES. Astrophysical Journal, 2010, 711, 312-321.	4.5	19
74	Size matters. Astronomische Nachrichten, 2010, 331, 558-562.	1.2	2
75	Milne-Eddington inversion of the Fe I line pair at 630Ânm. Astronomy and Astrophysics, 2010, 518, A3.	5.1	12
76	Retrieval of solar magnetic fields from high-spatial resolution filtergraph data: the Imaging Magnetograph eXperiment (IMaX). Astronomy and Astrophysics, 2010, 522, A101.	5.1	4
77	Applicability of Milne-Eddington inversions to high spatial resolution observations of the quiet Sun. Astronomy and Astrophysics, 2010, 518, A2.	5.1	26
78	Formation of Solar Magnetic Flux Tubes with Kilogauss Field Strength Induced by Convective Instability. Astrophysical Journal, 2008, 677, L145-L147.	4.5	89
79	The Magnetic Landscape of the Sun's Polar Region. Astrophysical Journal, 2008, 688, 1374-1381.	4.5	170
80	Magnetic field emergence in quiet Sun granules. Astronomy and Astrophysics, 2008, 481, L33-L36.	5.1	45
81	Strategy for the Inversion of Hinode Spectropolarimetric Measurements in the Quiet +n. Publication of the Astronomical Society of Japan, 2007, 59, S837-S844.	2.5	66
82	Quiet-Sun Internetwork Magnetic Fields from the Inversion of <i>Hinode</i> Measurements. Astrophysical Journal, 2007, 670, L61-L64.	4.5	175
83	Quiet-Sun Magnetic Fields from Space-borne Observations: Simulating Hinode's Case. Astrophysical Journal, 2007, 662, L31-L34.	4.5	38
84	The usefulness of analytic response functions. Astronomy and Astrophysics, 2007, 462, 1137-1145.	5.1	53
85	CASPER: A mission to study the time-dependent evolution of the magnetic solar chromosphere and transition regions. Experimental Astronomy, 0, , 1.	3.7	1