Shawn D Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1833951/publications.pdf Version: 2024-02-01

SHAWN D WALKED

#	Article	IF	CITATIONS
1	Catalysts for Suzukiâ^'Miyaura Coupling Processes:Â Scope and Studies of the Effect of Ligand Structure. Journal of the American Chemical Society, 2005, 127, 4685-4696.	13.7	1,663
2	A Rationally Designed Universal Catalyst for Suzuki–Miyaura Coupling Processes. Angewandte Chemie - International Edition, 2004, 43, 1871-1876.	13.8	832
3	Silicon directed ipso-substitution of polymer bound arylsilanes: Preparation of biaryls via the Suzuki cross-coupling reaction. Tetrahedron Letters, 1996, 37, 2703-2706.	1.4	120
4	Highly Enantioselective Hydrogenation of Styrenes Directed by 2′-Hydroxyl Groups. Organic Letters, 2011, 13, 1881-1883.	4.6	78
5	Molecular Complexity as a Driver for Chemical Process Innovation in the Pharmaceutical Industry. Journal of Organic Chemistry, 2019, 84, 4583-4603.	3.2	59
6	Highly Selective Rhodium-Catalyzed Conjugate Addition Reactions of 4-Oxobutenamides. Journal of Organic Chemistry, 2007, 72, 8870-8876.	3.2	49
7	Practical Asymmetric Conjugate Alkynylation of Meldrum's Acid-Derived Acceptors: Access to Chiral β-Alkynyl Acids. Journal of the American Chemical Society, 2010, 132, 436-437.	13.7	49
8	Development of a Scalable Synthesis of a GPR40 Receptor Agonist. Organic Process Research and Development, 2011, 15, 570-580.	2.7	48
9	Selective Catalytic Hydrogenation of Nitro Groups in the Presence of Activated Heteroaryl Halides. Journal of Organic Chemistry, 2011, 76, 9841-9844.	3.2	39
10	Asymmetric syntheses of a GPR40 receptor agonist via diastereoselective and enantioselective conjugate alkynylation. Tetrahedron, 2010, 66, 4730-4737.	1.9	26
11	A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 1: CDI-Promoted Amide Bond Formation. Organic Process Research and Development, 2020, 24, 1861-1875.	2.7	25
12	Development of a Suitable Salt Form for a GPR40 Receptor Agonist. Organic Process Research and Development, 2011, 15, 104-111.	2.7	24
13	A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 3: Manganese-Catalyzed Asymmetric Epoxidation, Crystallization, and Filtration. Organic Process Research and Development, 2020, 24, 1891-1908.	2.7	23
14	Continuous Process Improvement in the Manufacture of Carfilzomib, Part 2: An Improved Process for Synthesis of the Epoxyketone Warhead. Organic Process Research and Development, 2020, 24, 490-499.	2.7	20
15	A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 2: Enone Synthesis via a Barbier-Type Grignard Process. Organic Process Research and Development, 2020, 24, 1876-1890.	2.7	18
16	Appearance of a New Hydrated Form during Development: A Case Study in Process and Solid-State Optimization. Organic Process Research and Development, 2015, 19, 1842-1848.	2.7	16
17	Development of a Commercial Process To Prepare AMG 232 Using a Green Ozonolysis–Pinnick Tandem Transformation. Journal of Organic Chemistry, 2019, 84, 4763-4779.	3.2	16
18	Preparation and decarboxylative rearrangement of (Z)-enyne esters. Tetrahedron Letters, 2007, 48, 5679-5682.	1.4	15

SHAWN D WALKER

#	Article	IF	CITATIONS
19	Catalytic Asymmetric Synthesis of a Tertiary Benzylic Carbon Center via Phenol-Directed Alkene Hydrogenation. Journal of Organic Chemistry, 2011, 76, 5198-5206.	3.2	14
20	Development of a Factory Process for Omecamtiv Mecarbil, a Novel Cardiac Myosin Activator. Organic Process Research and Development, 2019, 23, 1558-1567.	2.7	12
21	Rational Screening Approach for Classical Chiral Resolution under Thermodynamic Equilibrium: A Case Study of Diphenyl-Substituted <i>N</i> -Methyl-Piperazine. Organic Process Research and Development, 2011, 15, 53-63.	2.7	11
22	Implementing Continuous Manufacturing for the Final Methylation Step in the AMG 397 Process to Deliver Key Quality Attributes. Organic Process Research and Development, 2021, 25, 486-499.	2.7	11
23	Correlation of Drug Substance Particle Size Distribution with Other Bulk Properties to Predict Critical Quality Attributes. Organic Process Research and Development, 2015, 19, 1076-1081.	2.7	10
24	Sequential Anionic 1,3 Ester Shifts and Intramolecular Stille Couplings: A New Protocol for the Concise Assembly of Functionalized Polycyclic Dienes. Synlett, 1999, 1999, 1082-1084.	1.8	7
25	Development of a Robust and Highly Selective Ru(II)-Catalyzed Dynamic Kinetic Resolution Used to Manufacture AMG 232. Organic Process Research and Development, 2020, 24, 1164-1174.	2.7	7
26	Continuous Process Improvement in the Manufacture of Carfilzomib, Part 1: Process Understanding and Improvements in the Commercial Route to Prepare the Epoxyketone Warhead. Organic Process Research and Development, 2020, 24, 481-489.	2.7	5
27	Accelerating Pharmaceutical Development via Metalâ€Mediated Bond Formation. Israel Journal of Chemistry, 2020, 60, 340-350.	2.3	5
28	Manufacturing of [¹⁴ C]-Labeled Drug Substance and Drug Product Utilized in Clinical Research: A Case Study of Omecamtiv Mecarbil. Current Pharmaceutical Design, 2016, 22, 609-615.	1.9	4