
John S Condeelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1833347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nature Communications, 2022, 13, 626.	5.8	58
2	<i>Listeria</i> delivers tetanus toxoid protein to pancreatic tumors and induces cancer cell death in mice. Science Translational Medicine, 2022, 14, eabc1600.	5.8	37
3	Combining TMEM Doorway Score and MenaCalc Score Improves the Prediction of Distant Recurrence Risk in HR+/HER2â ^{~,} Breast Cancer Patients. Cancers, 2022, 14, 2168.	1.7	2
4	SWIP—a stabilized window for intravital imaging of the murine pancreas. Open Biology, 2022, 12, .	1.5	4
5	Breast Cancer Cell Re-Dissemination from Lung Metastases—A Mechanism for Enhancing Metastatic Burden. Journal of Clinical Medicine, 2021, 10, 2340.	1.0	11
6	SUN-MKL1 Crosstalk Regulates Nuclear Deformation and Fast Motility of Breast Carcinoma Cells in Fibrillar ECM Microenvironment. Cells, 2021, 10, 1549.	1.8	9
7	Targeting Tie2 in the Tumor Microenvironment: From Angiogenesis to Dissemination. Cancers, 2021, 13, 5730.	1.7	36
8	Live tumor imaging shows macrophageÂinduction and TMEM-mediated enrichment of cancer stem cells during metastatic dissemination. Nature Communications, 2021, 12, 7300.	5.8	53
9	Intravital Imaging Techniques for Biomedical and Clinical Research. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 448-457.	1.1	37
10	Hematogenous Dissemination of Breast Cancer Cells From Lymph Nodes Is Mediated by Tumor MicroEnvironment of Metastasis Doorways. Frontiers in Oncology, 2020, 10, 571100.	1.3	19
11	A small-molecule allosteric inhibitor of BAX protects against doxorubicin-induced cardiomyopathy. Nature Cancer, 2020, 1, 315-328.	5.7	78
12	The Contribution of Race to Breast Tumor Microenvironment Composition and Disease Progression. Frontiers in Oncology, 2020, 10, 1022.	1.3	31
13	The role of the tumor microenvironment in tumor cell intravasation and dissemination. European Journal of Cell Biology, 2020, 99, 151098.	1.6	30
14	Validation of an Automated Quantitative Digital Pathology Approach for Scoring TMEM: A Prognostic Biomarker for Metastasis. Cancers, 2020, 12, 846.	1.7	7
15	Optimizing F-actin Labeling At the Leading Edge Of Cells Using Multiple Actin Probes, Fixation Methods and Imaging Techniques. Microscopy and Microanalysis, 2019, 25, 1254-1255.	0.2	0
16	Chemotherapy-Induced Metastasis: Molecular Mechanisms, Clinical Manifestations, Therapeutic Interventions. Cancer Research, 2019, 79, 4567-4576.	0.4	79
17	Assessing Tumor Microenvironment of Metastasis Doorway-Mediated Vascular Permeability Associated with Cancer Cell Dissemination using Intravital Imaging and Fixed Tissue Analysis. Journal of Visualized Experiments, 2019, , .	0.2	14
18	Septin 9 isoforms promote tumorigenesis in mammary epithelial cells by increasing migration and ECM degradation through metalloproteinase secretion at focal adhesions. Oncogene, 2019, 38, 5839-5859.	2.6	24

#	Article	IF	CITATIONS
19	Tumor Microenvironment of Metastasis (TMEM) Doorways Are Restricted to the Blood Vessel Endothelium in Both Primary Breast Cancers and Their Lymph Node Metastases. Cancers, 2019, 11, 1507.	1.7	31
20	Tunneling nanotubes, a novel mode of tumor cell-macrophage communication in tumor cell invasion. Journal of Cell Science, 2019, 132, .	1.2	74
21	Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease. Nature Communications, 2019, 10, 2110.	5.8	139
22	Optimizing leading edge F-actin labeling using multiple actin probes, fixation methods and imaging modalities. BioTechniques, 2019, 66, 113-119.	0.8	16
23	The emerging roles of macrophages in cancer metastasis and response to chemotherapy. Journal of Leukocyte Biology, 2019, 106, 259-274.	1.5	80
24	Optogenetic control of cofilin and αTAT in living cells using Z-lock. Nature Chemical Biology, 2019, 15, 1183-1190.	3.9	36
25	Homophilic CD44 Interactions Mediate Tumor Cell Aggregation and Polyclonal Metastasis in Patient-Derived Breast Cancer Models. Cancer Discovery, 2019, 9, 96-113.	7.7	256
26	Chemotherapy-induced metastasis: mechanisms and translational opportunities. Clinical and Experimental Metastasis, 2018, 35, 269-284.	1.7	106
27	Macrophages orchestrate breast cancer early dissemination and metastasis. Nature Communications, 2018, 9, 21.	5.8	331
28	A Unidirectional Transition from Migratory to Perivascular Macrophage Is Required for Tumor Cell Intravasation. Cell Reports, 2018, 23, 1239-1248.	2.9	188
29	A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nature Methods, 2018, 15, 73-80.	9.0	131
30	Pyk2 and FAK differentially regulate invadopodia formation and function in breast cancer cells. Journal of Cell Biology, 2018, 217, 375-395.	2.3	47
31	Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth. Breast Cancer Research, 2018, 20, 131.	2.2	11
32	Black race and distant recurrence after neoadjuvant or adjuvant chemotherapy in breast cancer. Clinical and Experimental Metastasis, 2018, 35, 613-623.	1.7	17
33	Myosin-IIA heavy chain phosphorylation on S1943 regulates tumor metastasis. Experimental Cell Research, 2018, 370, 273-282.	1.2	10
34	The Different Routes to Metastasis via Hypoxia-Regulated Programs. Trends in Cell Biology, 2018, 28, 941-956.	3.6	83
35	A novel neuregulin – jagged1 paracrine loop in breast cancer transendothelial migration. Breast Cancer Research, 2018, 20, 24.	2.2	22
36	Targeting invadopodia-mediated breast cancer metastasis by using ABL kinase inhibitors. Oncotarget, 2018. 9. 22158-22183.	0.8	35

#	Article	IF	CITATIONS
37	Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nature Cell Biology, 2017, 19, 120-132.	4.6	258
38	Tumor Cell Invadopodia: Invasive Protrusions that Orchestrate Metastasis. Trends in Cell Biology, 2017, 27, 595-607.	3.6	292
39	Phosphorylated cortactin recruits Vav2 guanine nucleotide exchange factor to activate Rac3 and promote invadopodial function in invasive breast cancer cells. Molecular Biology of the Cell, 2017, 28, 1347-1360.	0.9	38
40	Rac3 regulates breast cancer invasion and metastasis by controlling adhesion and matrix degradation. Journal of Cell Biology, 2017, 216, 4331-4349.	2.3	66
41	The Selective Tie2 Inhibitor Rebastinib Blocks Recruitment and Function of Tie2Hi Macrophages in Breast Cancer and Pancreatic Neuroendocrine Tumors. Molecular Cancer Therapeutics, 2017, 16, 2486-2501.	1.9	106
42	Multi-scale Time-lapse Intravital Imaging of Soft Tissues to Map Single Cell Behavior. Microscopy and Microanalysis, 2017, 23, 1168-1169.	0.2	0
43	Time-lapsed, large-volume, high-resolution intravital imaging for tissue-wide analysis of single cell dynamics. Methods, 2017, 128, 65-77.	1.9	39
44	Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Science Translational Medicine, 2017, 9, .	5.8	370
45	Macrophage-Dependent Cytoplasmic Transfer during Melanoma Invasion InÂVivo. Developmental Cell, 2017, 43, 549-562.e6.	3.1	98
46	A metastasis biomarker (MetaSite Breastâ,,¢ Score) is associated with distant recurrence in hormone receptor-positive, HER2-negative early-stage breast cancer. Npj Breast Cancer, 2017, 3, 42.	2.3	48
47	A balanced level of profilin-1 promotes stemness and tumor-initiating potential of breast cancer cells. Cell Cycle, 2017, 16, 2366-2373.	1.3	12
48	Chemotherapy-induced metastasis in breast cancer. Oncotarget, 2017, 8, 110733-110734.	0.8	14
49	Phase Ib study of rebastinib plus antitubulin therapy with paclitaxel or eribulin in patients with metastatic breast cancer (MBC) Journal of Clinical Oncology, 2017, 35, TPS2611-TPS2611.	0.8	1
50	Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature, 2016, 540, 588-592.	13.7	424
51	In Vivo Visualization of Stromal Macrophages via label-free FLIM-based metabolite imaging. Scientific Reports, 2016, 6, 25086.	1.6	65
52	Macrophage-dependent tumor cell transendothelial migration is mediated by Notch1/MenaINV-initiated invadopodium formation. Scientific Reports, 2016, 6, 37874.	1.6	74
53	Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe. Intravital, 2016, 5, e1187803.	2.0	24
54	Signatures of breast cancer metastasis at a glance. Journal of Cell Science, 2016, 129, 1751-8.	1.2	52

#	Article	IF	CITATIONS
55	Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells. EBioMedicine, 2016, 13, 146-156.	2.7	90
56	MenaINV dysregulates cortactin phosphorylation to promote invadopodium maturation. Scientific Reports, 2016, 6, 36142.	1.6	39
57	The alternatively-included 11a sequence modifies the effects of Mena on actin cytoskeletal organization and cell behavior. Scientific Reports, 2016, 6, 35298.	1.6	22
58	Extended Time-lapse Intravital Imaging of Real-time Multicellular Dynamics in the Tumor Microenvironment. Journal of Visualized Experiments, 2016, , .	0.2	20
59	Long-term High-Resolution Intravital Microscopy in the Lung with a Vacuum Stabilized Imaging Window. Journal of Visualized Experiments, 2016, , .	0.2	22
60	Validation of a device for the active manipulation of the tumor microenvironment during intravital imaging. Intravital, 2016, 5, e1182271.	2.0	16
61	Characterization of the expression of the pro-metastatic MenaINV isoform during breast tumor progression. Clinical and Experimental Metastasis, 2016, 33, 249-261.	1.7	23
62	GPCR Signaling Mediates Tumor Metastasis via PI3Kβ. Cancer Research, 2016, 76, 2944-2953.	0.4	47
63	<i>In vivo</i> subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility. Intravital, 2015, 4, 1-11.	2.0	54
64	Menacalc, a quantitative method of metastasis assessment, as a prognostic marker for axillary node-negative breast cancer. BMC Cancer, 2015, 15, 483.	1.1	27
65	Brightness-equalized quantum dots. Nature Communications, 2015, 6, 8210.	5.8	105
66	Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage–Derived VEGFA. Cancer Discovery, 2015, 5, 932-943.	7.7	474
67	Agingâ€related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell, 2015, 14, 582-594.	3.0	106
68	PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena. Molecular Biology of the Cell, 2015, 26, 3867-3878.	0.9	31
69	Invadopodia in context. Cell Adhesion and Migration, 2014, 8, 273-279.	1.1	33
70	Digging a little deeper: The stages of invadopodium formation and maturation. European Journal of Cell Biology, 2014, 93, 438-444.	1.6	138
71	Spatial regulation of tumor cell protrusions by RhoC. Cell Adhesion and Migration, 2014, 8, 263-267.	1.1	32
72	Multiparametric Classification Links Tumor Microenvironments with Tumor Cell Phenotype. PLoS Biology, 2014, 12, e1001995.	2.6	143

#	Article	IF	CITATIONS
73	Invasive breast carcinoma cells from patients exhibit Mena ^{INV} - and macrophage-dependent transendothelial migration. Science Signaling, 2014, 7, ra112.	1.6	89
74	A Trio–Rac1–Pak1 signalling axis drives invadopodiaÂdisassembly. Nature Cell Biology, 2014, 16, 571-583.	4.6	139
75	Tumor Microenvironment of Metastasis and Risk of Distant Metastasis of Breast Cancer. Journal of the National Cancer Institute, 2014, 106, .	3.0	158
76	Talin regulates moesin–NHE-1 recruitment to invadopodia and promotes mammary tumor metastasis. Journal of Cell Biology, 2014, 205, 737-751.	2.3	96
77	Imaging Tumor Cell Movement In Vivo. Current Protocols in Cell Biology, 2013, 58, Unit19.7.	2.3	30
78	Wiskott-Aldrich Syndrome Protein Regulates Leukocyte-Dependent Breast Cancer Metastasis. Cell Reports, 2013, 4, 429-436.	2.9	45
79	Tks5 and SHIP2 Regulate Invadopodium Maturation, but Not Initiation, in Breast Carcinoma Cells. Current Biology, 2013, 23, 2079-2089.	1.8	151
80	Functions of cofilin in cell locomotion and invasion. Nature Reviews Molecular Cell Biology, 2013, 14, 405-415.	16.1	388
81	\hat{I}^21 integrin regulates Arg to promote invadopodial maturation and matrix degradation. Molecular Biology of the Cell, 2013, 24, 1661-1675.	0.9	125
82	Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. Intravital, 2013, 2, e25294.	2.0	136
83	High-Resolution Live-Cell Imaging and Time-Lapse Microscopy of Invadopodium Dynamics and Tracking Analysis. Methods in Molecular Biology, 2013, 1046, 343-357.	0.4	37
84	Reconstitution of in vivo macrophage-tumor cell pairing and streaming motility on one-dimensional micro-patterned substrates. Intravital, 2012, 1, 77-85.	2.0	50
85	N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. Journal of Cell Science, 2012, 125, 724-734.	1.2	228
86	Correlated Immunohistochemical and Cytological Assays for the Prediction of Hematogenous Dissemination of Breast Cancer. Journal of Histochemistry and Cytochemistry, 2012, 60, 168-173.	1.3	16
87	Quantitative assessment of invasive mena isoforms (Menacalc) as an independent prognostic marker in breast cancer. Breast Cancer Research, 2012, 14, R124.	2.2	40
88	Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients. Breast Cancer Research, 2012, 14, R139.	2.2	120
89	Directed cell invasion and migration during metastasis. Current Opinion in Cell Biology, 2012, 24, 277-283.	2.6	391
90	Contribution of CXCL12 secretion to invasion of breast cancer cells. Breast Cancer Research, 2012, 14, R23.	2.2	92

#	Article	IF	CITATIONS
91	Chemotaxis in cancer. Nature Reviews Cancer, 2011, 11, 573-587.	12.8	785
92	Metastasis: tumor cells becoming MENAcing. Trends in Cell Biology, 2011, 21, 81-90.	3.6	98
93	Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nature Protocols, 2011, 6, 1500-1520.	5.5	119
94	Mena invasive (MenaINV) and Mena11a isoforms play distinct roles in breast cancer cell cohesion and association with TMEM. Clinical and Experimental Metastasis, 2011, 28, 515-527.	1.7	66
95	Mena invasive (MenalNV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. Journal of Cell Science, 2011, 124, 2120-2131.	1.2	163
96	High-Resolution Multiphoton Imaging of Tumors In Vivo. Cold Spring Harbor Protocols, 2011, 2011, pdb.top065904.	0.2	58
97	An EGFR–Src–Arg–Cortactin Pathway Mediates Functional Maturation of Invadopodia and Breast Cancer Cell Invasion. Cancer Research, 2011, 71, 1730-1741.	0.4	236
98	Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. Journal of Cell Biology, 2011, 195, 903-920.	2.3	181
99	An EMT–Driven Alternative Splicing Program Occurs in Human Breast Cancer and Modulates Cellular Phenotype. PLoS Genetics, 2011, 7, e1002218.	1.5	399
100	Intravital Imaging and Photoswitching in Tumor Invasion and Intravasation Microenvironments. Microscopy Today, 2010, 18, 34-37.	0.2	10
101	Gene Expression Analysis of Macrophages That Facilitate Tumor Invasion Supports a Role for Wnt-Signaling in Mediating Their Activity in Primary Mammary Tumors. Journal of Immunology, 2010, 184, 702-712.	0.4	208
102	In Vivo Imaging in Cancer. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003848-a003848.	2.3	198
103	Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors. Breast Cancer Research, 2010, 12, R101.	2.2	70
104	Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18115-18120.	3.3	408
105	Tumor Microenvironment of Metastasis in Human Breast Carcinoma: A Potential Prognostic Marker Linked to Hematogenous Dissemination. Clinical Cancer Research, 2009, 15, 2433-2441.	3.2	318
106	Invasion of Human Breast Cancer Cells <i>In vivo</i> Requires Both Paracrine and Autocrine Loops Involving the Colony-Stimulating Factor-1 Receptor. Cancer Research, 2009, 69, 9498-9506.	0.4	188
107	Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion inÂvivo. Clinical and Experimental Metastasis, 2009, 26, 153-159.	1.7	107
108	Intravital imaging of metastatic behavior through a mammary imaging window. Nature Methods, 2008, 5, 1019-1021.	9.0	364

#	Article	IF	CITATIONS
109	A Mena Invasion Isoform Potentiates EGF-Induced Carcinoma Cell Invasion and Metastasis. Developmental Cell, 2008, 15, 813-828.	3.1	242
110	Direct Visualization of Macrophage-Assisted Tumor Cell Intravasation in Mammary Tumors. Cancer Research, 2007, 67, 2649-2656.	0.4	940
111	Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis. Cell, 2006, 124, 263-266.	13.5	2,377
112	Probing the Microenvironment of Mammary Tumors Using Multiphoton Microscopy. Journal of Mammary Gland Biology and Neoplasia, 2006, 11, 151-163.	1.0	118
113	Invadopodia and podosomes in tumor invasion. European Journal of Cell Biology, 2006, 85, 213-218.	1.6	146
114	Epidermal Growth Factor Receptor Overexpression Results in Increased Tumor Cell Motility In vivo Coordinately with Enhanced Intravasation and Metastasis. Cancer Research, 2006, 66, 192-197.	0.4	174
115	How and why does β-actin mRNA target?. Biology of the Cell, 2005, 97, 97-110.	0.7	214
116	Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends in Cell Biology, 2005, 15, 138-145.	3.6	248
117	Macrophages Promote the Invasion of Breast Carcinoma Cells via a Colony-Stimulating Factor-1/Epidermal Growth Factor Paracrine Loop. Cancer Research, 2005, 65, 5278-5283.	0.4	660
118	Molecular mechanisms of invadopodium formation. Journal of Cell Biology, 2005, 168, 441-452.	2.3	597
119	THE GREAT ESCAPE: When Cancer Cells Hijack the Genes for Chemotaxis and Motility. Annual Review of Cell and Developmental Biology, 2005, 21, 695-718.	4.0	320
120	A Paracrine Loop between Tumor Cells and Macrophages Is Required for Tumor Cell Migration in Mammary Tumors. Cancer Research, 2004, 64, 7022-7029.	0.4	1,019
121	Gene expression analysis on small numbers of invasive cells collected by chemotaxis from primary mammary tumors of the mouse. BMC Biotechnology, 2003, 3, 13.	1.7	37
122	Intravital imaging of cell movement in tumours. Nature Reviews Cancer, 2003, 3, 921-930.	12.8	842
123	GFP expression in the mammary gland for imaging of mammary tumor cells in transgenic mice. Cancer Research, 2002, 62, 7166-9.	0.4	94
124	Filamins as integrators of cell mechanics and signalling. Nature Reviews Molecular Cell Biology, 2001, 2, 138-145.	16.1	875
125	Actin filaments are severed by both native and recombinantDictyostelium cofilin but to different extents. Cytoskeleton, 2000, 45, 293-306.	4.4	78
126	Chemoattractant-induced lamellipod extension. , 1998, 43, 433-443.		58

8

#	Article	IF	CITATIONS
127	Regulation of Protrusion Shape and Adhesion to the Substratum during Chemotactic Responses of Mammalian Carcinoma Cells. Experimental Cell Research, 1998, 241, 285-299.	1.2	143
128	EGF stimulates lamellipod extension in metastatic mammary adenocarcinoma cells by an actin-dependent mechanism. Clinical and Experimental Metastasis, 1996, 14, 61-72.	1.7	126
129	Chemotaxis of metastatic tumor cells: Clues to mechanisms from the Dictyostelium paradigm. Cancer and Metastasis Reviews, 1992, 11, 55-68.	2.7	48
130	Are all pseudopods created equal?. Cytoskeleton, 1992, 22, 1-6.	4.4	53
131	Molecular Analysis of Amoeboid Chemotaxis. Cancer Investigation, 1990, 8, 659-660.	0.6	0
132	Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature, 1990, 347, 494-496.	13.7	347
133	Actin-Associated proteins inDictyostelium discoideum. Genesis, 1990, 11, 328-332.	3.1	27
134	Changes in the association of actin-binding proteins with the actin cytoskeleton during chemotactic stimulation ofDictyostelium discoideum. Cytoskeleton, 1989, 13, 57-63.	4.4	56
135	Relationship of pseudopod extension to chemotactic hormone-induced actin polymerization in amoeboid cells. Journal of Cellular Biochemistry, 1988, 37, 285-299.	1.2	151
136	Isolation of an immunoreactive analogue of brain fodrin that is associated with the cell cortex ofDictyostelium amoebae. Cytoskeleton, 1988, 11, 303-317.	4.4	49
137	Fine structure of gels prepared from an actin-binding protein and actin: Comparison to cytoplasmic extracts and cortical cytoplasm in amoeboid cells ofDictyostelium discoideum. Journal of Cellular Biochemistry, 1986, 30, 227-243.	1.2	31
138	Localization of actin in Chlamydomonas using antiactin and NBD-phallacidin. Cell Motility, 1985, 5, 415-430.	1.9	56
139	Isolation of a new actin-binding protein from dictyostelium discoideum. Cell Motility, 1982, 2, 273-285.	1.9	46
140	Chemotaxis of Cancer Cells during Invasion and Metastasis. , 0, , 175-188.		1
141	A Protocol for the Implantation of a Permanent Window for High-Resolution Imaging of the Murine	0.3	4