
Miguel Angel Olivares-Méndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1832450/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Compact and Portable Exoskeleton for Shoulder and Elbow Assistance for Workers and Prospective Use in Space. IEEE Transactions on Human-Machine Systems, 2023, 53, 668-677.	3.5	5
2	Enhancing Lunar Reconnaissance Orbiter Images via Multi-Frame Super Resolution for Future Robotic Space Missions. IEEE Robotics and Automation Letters, 2021, 6, 7721-7727.	5.1	5
3	Detection of Binary Square Fiducial Markers Using an Event Camera. IEEE Access, 2021, 9, 27813-27826.	4.2	5
4	SORA Methodology for Multi-UAS Airframe Inspections in an Airport. Drones, 2021, 5, 141.	4.9	5
5	Trajectory Tracking for Aerial Robots: an Optimization-Based Planning and Control Approach. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 100, 531-574.	3.4	7
6	A Real-Time Approach for Chance-Constrained Motion Planning With Dynamic Obstacles. IEEE Robotics and Automation Letters, 2020, 5, 3620-3625.	5.1	45
7	Deep Reinforcement Learning-based Continuous Control for Multicopter Systems. , 2019, , .		4
8	A case study on the impact of masking moving objects on the camera pose regression with CNNs. , 2019, , .		1
9	Real-Time Human Head Imitation for Humanoid Robots. , 2019, , .		2
10	Vision-Based Aircraft Pose Estimation for UAVs Autonomous Inspection without Fiducial Markers. , 2019, , .		7
11	Operational space control of a lightweight robotic arm actuated by shape memory alloy wires: A comparative study. Journal of Intelligent Material Systems and Structures, 2019, 30, 1368-1384.	2.5	8
12	Model predictive cooperative localization control of multiple UAVs using potential function sensor constraints. Autonomous Robots, 2019, 43, 153-178.	4.8	12
13	Collision Avoidance Effects on the Mobility of a UAV Swarm Using Chaotic Ant Colony with Model Predictive Control. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 93, 227-243.	3.4	46
14	A Real-Time 3D Path Planning Solution for Collision-Free Navigation of Multirotor Aerial Robots in Dynamic Environments. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 93, 33-53.	3.4	57
15	Faster Visual-Based Localization with Mobile-PoseNet. Lecture Notes in Computer Science, 2019, , 219-230.	1.3	3
16	Analyzing and improving multi-robot missions by using process mining. Autonomous Robots, 2018, 42, 1187-1205.	4.8	16
17	A Perspective of Security for Mobile ServiceÂRobots. Advances in Intelligent Systems and Computing, 2018, , 88-100.	0.6	3
18	Evasive Maneuvering for UAVs: An MPC Approach. Advances in Intelligent Systems and Computing, 2018, , 829-840.	0.6	3

#	Article	IF	CITATIONS
19	Towards trajectory planning from a given path for multirotor aerial robots trajectory tracking. , 2018, , .		2
20	Model Predictive Control for Aerial Collision Avoidance in Dynamic Environments. , 2018, , .		19
21	Model predictive control for cooperative control of space robots. AIP Conference Proceedings, 2017,	0.4	5
22	Hierarchical control of aerial manipulation vehicle. AIP Conference Proceedings, 2017, , .	0.4	1
23	Real-time graph-based SLAM in unknown environments using a small UAV. , 2017, , .		8
24	Area exploration with a swarm of UAVs combining deterministic chaotic ant colony mobility with position MPC. , 2017, , .		16
25	Real time degradation identification of UAV using machine learning techniques. , 2017, , .		6
26	Multi-Robot Interfaces and Operator Situational Awareness: Study of the Impact of Immersion and Prediction. Sensors, 2017, 17, 1720.	3.8	39
27	Implementation and validation of an event-based real-time nonlinear model predictive control framework with ROS interface for single and multi-robot systems. , 2017, , .		3
28	Vision-Based Steering Control, Speed Assistance and Localization for Inner-City Vehicles. Sensors, 2016, 16, 362.	3.8	14
29	Model Predictive Control for Spacecraft Rendezvous. , 2016, , .		3
30	Lightweight robotic arm actuated by shape memory alloy (SMA) wires. , 2016, , .		3
31	Control of aerial manipulation vehicle in operational space. , 2016, , .		6
32	Adaptive Control of Robotic arm with Hysteretic Joint. , 2016, , .		1
33	Adaptive Control of Hysteretic Robotic arm in Operational Space. , 2016, , .		2
34	Operational Space Control of a Lightweight Robotic Arm Actuated by Shape Memory Alloy (SMA) Wires. , 2016, , .		1
35	Estimating speed profiles from aerial vision — A comparison of regression based sampling techniques. , 2016, , .		0
36	UAV degradation identification for pilot notification using machine learning techniques. , 2016, , .		0

3

#	Article	IF	CITATIONS
37	Towards an Autonomous Vision-Based Unmanned Aerial System against Wildlife Poachers. Sensors, 2015, 15, 31362-31391.	3.8	73
38	Visual odometry based absolute target geo-location from micro aerial vehicle. , 2015, , .		0
39	Context-based selection and execution of robot perception graphs. , 2015, , .		4
40	Vision based fuzzy control autonomous landing with UAVs: From V-REP to real experiments. , 2015, , .		31
41	Using the Cross-Entropy method for control optimization: A case study of see-and-avoid on unmanned aerial vehicles. , 2014, , .		4
42	Adaptive control of Aerial Manipulation Vehicle. , 2014, , .		18
43	Online learning-based robust visual tracking for autonomous landing of Unmanned Aerial Vehicles. , 2014, , .		14
44	Robust real-time vision-based aircraft tracking from Unmanned Aerial Vehicles. , 2014, , .		72
45	Setting up a testbed for UAV vision based control using V-REP & ROS: A case study on aerial visual inspection. , 2014, , .		12
46	HMPMR strategy for real-time tracking in aerial images, using direct methods. Machine Vision and Applications, 2014, 25, 1283-1308.	2.7	10
47	Monocular Visual-Inertial SLAM-Based Collision Avoidance Strategy for Fail-Safe UAV Using Fuzzy Logic Controllers. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 73, 513-533.	3.4	45
48	The NOAH Project: Giving a Chance to Threatened Species in Africa with UAVs. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2014, , 198-208.	0.3	5
49	A Hierarchical Tracking Strategy for Vision-Based Applications On-Board UAVs. Journal of Intelligent and Robotic Systems: Theory and Applications, 2013, 72, 517-539.	3.4	13
50	UAS see-and-avoid strategy using a fuzzy logic controller optimized by Cross-Entropy in Scaling Factors and Membership Functions. , 2013, , .		7
51	Cross-Entropy Optimization for Scaling Factors of a Fuzzy Controller: A See-and-Avoid Approach for Unmanned Aerial Systems. Journal of Intelligent and Robotic Systems: Theory and Applications, 2013, 69, 189-205.	3.4	23
52	Real-time Adaptive Multi-Classifier Multi-Resolution Visual Tracking Framework for Unmanned Aerial Vehicles. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 99-106.	0.4	6
53	Autonomous Landing of an Unmanned Aerial Vehicle using Image-Based Fuzzy Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 79-86.	0.4	6
54	Modeling and Control of Aerial Manipulation Vehicle with Visual sensor. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 303-309.	0.4	13

#	Article	IF	CITATIONS
55	MAVwork: A Framework for Unified Interfacing between Micro Aerial Vehicles and Visual Controllers. Studies in Computational Intelligence, 2013, , 165-179.	0.9	7
56	Autonomous Guided Car Using a Fuzzy Controller. Studies in Computational Intelligence, 2013, , 37-55.	0.9	0
57	See-and-avoid quadcopter using fuzzy control optimized by cross-entropy. , 2012, , .		11
58	A visual AGV-urban car using Fuzzy control. , 2011, , .		9
59	3D object following based on visual information for Unmanned Aerial Vehicles. , 2011, , .		15
60	On-board and Ground Visual Pose Estimation Techniques for UAV Control. Journal of Intelligent and Robotic Systems: Theory and Applications, 2011, 61, 301-320.	3.4	56
61	Unmanned aerial vehicles UAVs attitude, height, motion estimation and control using visual systems. Autonomous Robots, 2010, 29, 17-34.	4.8	53
62	Omnidirectional vision applied to Unmanned Aerial Vehicles (UAVs) attitude and heading estimation. Robotics and Autonomous Systems, 2010, 58, 809-819.	5.1	44
63	Fuzzy controller for UAV-landing task using 3D-position visual estimation. , 2010, , .		22
64	3D pose estimation based on planar object tracking for UAVs control. , 2010, , .		48
65	An intelligent control strategy based on ANFIS techniques in order to improve the performance of a low-cost unmanned aerial vehicle vision system. , 2010, , .		5
66	A robotic eye controller based on cooperative neural agents. , 2010, , .		2
67	On-board and Ground Visual Pose Estimation Techniques for UAV Control. , 2010, , 301-320.		2
68	Computer Vision Onboard UAVs for Civilian Tasks. Journal of Intelligent and Robotic Systems: Theory and Applications, 2009, 54, 105-135.	3.4	65
69	Visual 3-D SLAM from UAVs. Journal of Intelligent and Robotic Systems: Theory and Applications, 2009, 55, 299-321.	3.4	123
70	Trinocular ground system to control UAVs. , 2009, , .		28
71	A pan-tilt camera Fuzzy vision controller on an unmanned aerial vehicle. , 2009, , .		17
72	Fuzzy Logic User Adaptive Navigation Control System For Mobile Robots In Unknown Environments. , 2007, , .		10

#	Article	IF	CITATIONS
73	Vision Based Fuzzy Control Approaches for Unmanned Aerial Vehicles. , 0, , .		3