List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1831925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sakiadis flow of an upper-convected Maxwell fluid. International Journal of Non-Linear Mechanics, 2005, 40, 1220-1228.	2.6	129
2	Stagnation-point flow of upper-convected Maxwell fluids. International Journal of Non-Linear Mechanics, 2006, 41, 1242-1247.	2.6	129
3	The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 779-794.	3.3	110
4	Local similarity solution for the flow of a "second-grade―viscoelastic fluid above a moving plate. International Journal of Non-Linear Mechanics, 2004, 39, 1265-1273.	2.6	84
5	MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 473-488.	3.3	59
6	Magnetohydrodynamic (MHD) flows of viscoelastic fluids in converging/diverging channels. International Journal of Engineering Science, 2007, 45, 923-938.	5.0	51
7	On the use of homotopy analysis method for solving unsteady MHD flow of Maxwellian fluids above impulsively stretching sheets. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 1355-1365.	3.3	51
8	The effect of a variable plastic viscosity on the restart problem of pipelines filled with gelled waxy crude oils. Journal of Non-Newtonian Fluid Mechanics, 2014, 205, 16-27.	2.4	46
9	Swirling flow of Bingham fluids above a rotating disk: An exact solution. Journal of Non-Newtonian Fluid Mechanics, 2013, 197, 41-47.	2.4	41
10	Cavity flow simulation of Carreau–Yasuda non-Newtonian fluids using PIM meshfree method. Applied Mathematical Modelling, 2009, 33, 4131-4145.	4.2	34
11	Peristaltic flow of Bingham fluids at large Reynolds numbers: A numerical study. Journal of Non-Newtonian Fluid Mechanics, 2016, 227, 30-44.	2.4	32
12	Elasticity of associative polymer solutions and slip at high shear stress. Journal of Non-Newtonian Fluid Mechanics, 2000, 90, 127-158.	2.4	30
13	Blasius flow of thixotropic fluids: A numerical study. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 711-721.	3.3	23
14	An exact solution for laminar, unidirectional flow of Houska thixotropic fluids in a circular pipe. Journal of Non-Newtonian Fluid Mechanics, 2013, 194, 23-31.	2.4	18
15	Chaotic behavior of a single spherical gas bubble surrounded by a Giesekus liquid: A numerical study. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 800-811.	2.4	17
16	Two-phase viscous fingering of immiscible thixotropic fluids: A numerical study. Journal of Non-Newtonian Fluid Mechanics, 2015, 218, 40-52.	2.4	17
17	Viscous fingering in yield stress fluids: a numerical study. Journal of Engineering Mathematics, 2016, 97, 161-176.	1.2	17
18	Sedimentation of an elliptic rigid particle in a yield-stress fluid: A Lattice-Boltzmann simulation. Physics of Fluids, 2019, 31, .	4.0	15

#	Article	IF	CITATIONS
19	Simulating drag reduction phenomenon in turbulent pipe flows. Mechanics Research Communications, 2008, 35, 609-613.	1.8	13
20	On the use of characteristicâ€based split meshfree method for solving flow problems. International Journal for Numerical Methods in Fluids, 2008, 56, 1885-1907.	1.6	12
21	Effect of porosity on the settling behavior of a 2D elliptic particle in a narrow vessel: A lattice-Boltzmann simulation. Physics of Fluids, 2019, 31, .	4.0	12
22	Stability of power-law fluids in creeping plane Poiseuille: The effect of wall compliance. Journal of Non-Newtonian Fluid Mechanics, 2015, 216, 22-30.	2.4	11
23	On the use of peristaltic waves for the transport of soft particles: A numerical study. Physics of Fluids, 2020, 32, .	4.0	11
24	Instability of Bingham fluids in Taylor–Dean flow between two concentric cylinders at arbitrary gap spacings. International Journal of Non-Linear Mechanics, 2011, 46, 931-937.	2.6	10
25	Pulsatile Flow of Thixotropic Fluids through a Partially-Constricted Tube. Nihon Reoroji Gakkaishi, 2013, 41, 45-52.	1.0	10
26	Peristaltic transport of elliptic particles: A numerical study. Physics of Fluids, 2022, 34, .	4.0	10
27	Peristaltic Pumping of Thixotropic Fluids: a Numerical Study. Nihon Reoroji Gakkaishi, 2012, 40, 1-9.	1.0	9
28	Simulating Bubble Shape during its Rise in Carreau-Yasuda Fluids Using WC-SPH Method. Nihon Reoroji Gakkaishi, 2014, 41, 319-329.	1.0	9
29	On the Use of SPH Method for Simulating Gas Bubbles Rising in Viscoelastic Liquids. Nihon Reoroji Gakkaishi, 2015, 42, 309-319.	1.0	9
30	Flow of a Casson fluid through a locally-constricted porous channel: a numerical study. Korea Australia Rheology Journal, 2016, 28, 129-137.	1.7	9
31	The effect of thixotropy on a rising gas bubble: A numerical study. Korea Australia Rheology Journal, 2016, 28, 207-216.	1.7	9
32	Linear stability of shear-thinning fluids in deformable channels: Effect of inertial terms. Journal of Non-Newtonian Fluid Mechanics, 2016, 230, 80-91.	2.4	9
33	Peristaltic transport of solid particles suspended in a viscoplastic fluid: A numerical study. Journal of Non-Newtonian Fluid Mechanics, 2016, 236, 1-17.	2.4	7
34	Flow and displacement of waxy crude oils in a homogenous porous medium: A numerical study. Journal of Non-Newtonian Fluid Mechanics, 2016, 235, 47-63.	2.4	7
35	On the use of Lattice–Boltzmann method for simulating peristaltic flow of viscoplastic fluids in a closed cavity. Journal of Non-Newtonian Fluid Mechanics, 2017, 243, 1-15.	2.4	7
36	Magnetohydrodynamic flow of Bingham fluids in a plane channel: A theoretical study. Journal of Non-Newtonian Fluid Mechanics, 2019, 264, 1-18.	2.4	7

#	Article	IF	CITATIONS
37	On the use of viscous micropumps for transporting viscoelastic fluids in channel flows: A numerical study. Journal of Non-Newtonian Fluid Mechanics, 2021, 291, 104528.	2.4	7
38	Dean Instability of Bingham Fluids in Tangential Flow between Two Fixed Concentric Cylinders. Nihon Reoroji Gakkaishi, 2010, 38, 125-132.	1.0	6
39	Start-up flows of Dullaert–Mewis viscoplastic–thixoelastic fluids: A two-dimensional analysis. Journal of Non-Newtonian Fluid Mechanics, 2014, 214, 1-17.	2.4	6
40	Pressure-driven flows of Quemada fluids in a channel lined with a poroelastic layer: A linear stability analysis. Journal of Non-Newtonian Fluid Mechanics, 2017, 242, 23-47.	2.4	6
41	Hydromagnetic linear instability analysis of Giesekus fluids in plane Poiseuille flow. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2046-2055.	3.3	5
42	Viscous Fingering of Thixotropic Fluids: a Linear Stability Analysis. Nihon Reoroji Gakkaishi, 2015, 43, 31-38.	1.0	5
43	Taylor–Couette instability of thixotropic fluids. Meccanica, 2015, 50, 1451-1465.	2.0	5
44	On the Use of Magnetic Fields for Controlling the Temperature of Hot Spots on Porous Plaques in Stenosis Arteries. Nihon Reoroji Gakkaishi, 2016, 43, 135-144.	1.0	5
45	Creeping flow of Herschel-Bulkley fluids in collapsible channels: A numerical study. Korea Australia Rheology Journal, 2016, 28, 255-265.	1.7	5
46	On the use of a fluid's elasticity for deliberate rise of Taylor cells in a rotating micro-filter separator. Physics of Fluids, 2018, 30, .	4.0	5
47	On the Use of Lattice-Boltzmann Model for Simulating Lid-Driven Cavity Flows of Strain-hardening Fluids. Nihon Reoroji Gakkaishi, 2011, 38, 201-207.	1.0	4
48	Taylor-Couette Instability of Giesekus Fluids: Inertia Effects. Nihon Reoroji Gakkaishi, 2012, 40, 195-204.	1.0	4
49	Peristaltic transport of thixotropic fluids: A numerical simulation. Korea Australia Rheology Journal, 2019, 31, 71-79.	1.7	4
50	The Rise of Second Harmonics in Forced Oscillation of Gas Bubbles in Thixotropic Fluids. Nihon Reoroji Gakkaishi, 2011, 39, 113-117.	1.0	4
51	Lubricating Flow of Thixotropic Fluids in Slipper-Pad Bearing: A Numerical Study. Nihon Reoroji Gakkaishi, 2011, 39, 153-158.	1.0	3
52	Taylor–Dean instability of yield-stress fluids at large gaps. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 607-613.	2.4	3
53	Dynamics of Encapsulated Gas Bubbles Immersed in Thixotropic Fluids. Nihon Reoroji Gakkaishi, 2012, 40, 11-20.	1.0	3
54	Dynamic of Gas Bubbles Surrounded by a Dullaert-Mewis Thixotropic Fluid. Nihon Reoroji Gakkaishi, 2014, 41, 309-318.	1.0	3

#	Article	IF	CITATIONS
55	Peristaltic Flow of Giesekus Fluids through Curved Channels: an Approximate Solution. Nihon Reoroji Gakkaishi, 2014, 42, 9-17.	1.0	3
56	Peristaltic manipulation of a bio-particle contained in a closed cavity filled with a Bingham fluid: A numerical study. Journal of Non-Newtonian Fluid Mechanics, 2018, 252, 28-47.	2.4	3
57	On the use of biphasic mixture theory for investigating the linear stability of viscous flow through a channel lined with a viscoelastic porous bio-material. International Journal of Non-Linear Mechanics, 2018, 105, 200-211.	2.6	3
58	Linear stability analysis of time-dependent fluids in plane Couette flow past a poroelastic layer. Journal of Non-Newtonian Fluid Mechanics, 2019, 266, 1-19.	2.4	3
59	Using Mesh Free Method for Numerical Simulation of Non-Newtonian Fluid Flow Over a Step. Nihon Reoroji Gakkaishi, 2008, 36, 19-27.	1.0	3
60	Confined Swirling Flows of Simplified Phan-Thien-Tanner (SPTT) Fluids: a Numerical Study. Nihon Reoroji Gakkaishi, 2009, 37, 149-157.	1.0	3
61	On the Role Played by the Extensional Behavior of Giesekus Fluids in Plane Stagnation Flow. Nihon Reoroji Gakkaishi, 2009, 37, 31-38.	1.0	3
62	Hydromagnetic Instability of Viscoelastic Fluids in Blasius Flow. Nihon Reoroji Gakkaishi, 2009, 37, 173-180.	1.0	2
63	CREEPING FLOW OF VISCOELASTIC FLUIDS THROUGH TAPERED SLIT DIES: AN ANALYTICAL SOLUTION. Chemical Engineering Communications, 2009, 197, 466-480.	2.6	2
64	On the use of lattice Boltzmann model for simulating dean flow of non-Newtonian fluids in curved square ducts. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 4250-4261.	3.3	2
65	On the Validity of Boundary Layer Theory for Simulating von Karman Flows of Bingham Fluids. Nihon Reoroji Gakkaishi, 2014, 42, 161-167.	1.0	2
66	Hydroelastic Instability of Viscoplastic Fluids in Plane Channel Flow. Nihon Reoroji Gakkaishi, 2016, 43, 157-164.	1.0	2
67	Effect of pillars on the mixing efficiency of a peristaltically-driven Bingham fluid within a closed channel: A LBM simulation. Korea Australia Rheology Journal, 2018, 30, 75-88.	1.7	2
68	Buoyancy-driven exchange flow of immiscible yield-stress fluids in a vertical closed-ended container. Journal of Non-Newtonian Fluid Mechanics, 2019, 265, 79-91.	2.4	2
69	Numerical analysis of laminar viscoelastic fluid hammer phenomenon in an axisymmetric pipe. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	1.6	2
70	MHD Flow of Power-Law Fluids in Locally-Constricted Channels. Nihon Reoroji Gakkaishi, 2009, 37, 181-189.	1.0	2
71	On the Role Played by Extensional Viscosity in Peristaltic Transport of Circular Solid Particles Suspended in Oldroyd-B Liquids . Physics of Fluids, 0, , .	4.0	2
72	LID-DRIVEN CAVITY SIMULATION BY MESH-FREE METHOD. International Journal of Computational Methods, 2007, 04, 397-415.	1.3	1

5

#	Article	IF	CITATIONS
73	Translational motion of spherical gas bubbles in viscoelastic liquids subject to acoustic standing wave fields. Central South University, 2007, 14, 82-89.	0.5	1
74	On the use of genetic algorithm for finding the neutral instability curve in plane Poiseuille flow. International Journal of Non-Linear Mechanics, 2010, 45, 691-698.	2.6	1
75	Simualting the Flow of a Thixotropic Fluid above a Fixed Plate at Arbitrary Reynolds Numbers. Nihon Reoroji Gakkaishi, 2010, 38, 109-116.	1.0	1
76	Collapse of Cavitation Gas Bubbles in Giesekus Liquids. Nihon Reoroji Gakkaishi, 2011, 39, 55-64.	1.0	1
77	Resonance Frequency of Encapsulated Gas Bubbles in Thixotropic Fluids. Nihon Reoroji Gakkaishi, 2014, 42, 1-8.	1.0	1
78	On the Use of Inverse Methods to Parameter Estimation in Turbulent Pipe Flows of Drag Reducing Polymers. Nihon Reoroji Gakkaishi, 2008, 36, 241-251.	1.0	1
79	Numerical simulation of viscoelastic effects in peristaltic transport of drops. Journal of Non-Newtonian Fluid Mechanics, 2022, 306, 104826.	2.4	1
80	Translational Motion of Non-Spherical Cavitation Bubbles Collapsing in a Viscoelastic Fluid near a Rigid Boundary. Nihon Reoroji Gakkaishi, 2013, 41, 53-65.	1.0	0
81	Sakiadis Flow of Harris Fluids: a Series-Solution. Nihon Reoroji Gakkaishi, 2014, 42, 245-253.	1.0	Ο
82	Effect of non-affine motion on the centrifugal instability of circular Couette flow. Journal of Non-Newtonian Fluid Mechanics, 2016, 230, 19-30.	2.4	0
83	Predicting the excess pressure drop incurred by LPTT fluids in flow through a planar constricted channel. Korea Australia Rheology Journal, 2019, 31, 149-166.	1.7	Ο
84	Hydroelastic instability of viscoelastic fluids in developing flow through a compliant channel. Korea Australia Rheology Journal, 2020, 32, 99-119.	1.7	0
85	Corrigendum to "magnetohydrodynamic flow ofBingham fluids in a plane channel: A theoretical study― Journal of Non-Newtonian Fluid Mechanics, 2022, 303, 104790.	2.4	0