
Tong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1831442/publications.pdf Version: 2024-02-01

Томс Ми

#	Article	IF	CITATIONS
1	Manipulating electrostatic field to control the distribution of bioactive proteins or polymeric microparticles on planar surfaces for guiding cell migration. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112185.	5.0	3
2	Microneedle Array Patch Made of Kangfuxin/Chitosan/Fucoidan Complex Enables Full-Thickness Wound Healing. Frontiers in Chemistry, 2022, 10, 838920.	3.6	19
3	Accelerating Cell Migration along Radially Aligned Nanofibers through the Addition of Electrosprayed Nanoparticles in a Radial Density Gradient. Particle and Particle Systems Characterization, 2022, 39, .	2.3	8
4	Improving Biocompatibility of Polyester Fabrics through Polyurethane/Gelatin Complex Coating for Potential Vascular Application. Polymers, 2022, 14, 989.	4.5	5
5	Photothermal-Triggered Structural Change of Nanofiber Scaffold Integrating with Graded Mineralization to Promote Tendon–Bone Healing. Advanced Fiber Materials, 2022, 4, 908-922.	16.1	11
6	Design and Fabrication of Nanofibrous Dura Mater with Antifibrosis and Neuroprotection Effects on SH-SY5Y Cells. Polymers, 2022, 14, 1882.	4.5	3
7	Promotion of Neurite Outgrowth and Extension Using Injectable Welded Nanofibers. Chemical Research in Chinese Universities, 2021, 37, 522-527.	2.6	2
8	A bilayer vascular scaffold with spatially controlled release of growth factors to enhance in situ rapid endothelialization and smooth muscle regeneration. Materials and Design, 2021, 204, 109649.	7.0	17
9	Harnessing biocompatible nanofibers and silver nanoparticles for wound healing: Sandwich wound dressing versus commercial silver sulfadiazine dressing. Materials Science and Engineering C, 2021, 128, 112342.	7.3	37
10	A smart material built upon the photo-thermochromic effect and its use for managing indoor temperature. Chemical Communications, 2021, 57, 8628-8631.	4.1	4
11	Super-assembled silica nanoprobes for intracellular Zn(<scp>ii</scp>) sensing and reperfusion injury treatment through <i>in situ</i> MOF crystallization. Analyst, The, 2021, 146, 6788-6797.	3.5	5
12	Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nature Communications, 2021, 12, 6122.	12.8	86
13	Super-Assembled Periodic Mesoporous Organosilica Frameworks for Real-Time Hypoxia-Triggered Drug Release and Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 50246-50257.	8.0	11
14	Engineering Electrospun Nanofibers for the Treatment of Oral Diseases. Frontiers in Chemistry, 2021, 9, 797523.	3.6	11
15	Transforming Nanofiber Mats into Hierarchical Scaffolds with Graded Changes in Porosity and/or Nanofiber Alignment. Macromolecular Rapid Communications, 2020, 41, 1900579.	3.9	13
16	Mechanically-reinforced 3D scaffold constructed by silk nonwoven fabric and silk fibroin sponge. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111361.	5.0	14
17	Gold nanocages for effective photothermal conversion and related applications. Chemical Science, 2020, 11, 12955-12973.	7.4	46
18	Promoting Cell Migration and Neurite Extension along Uniaxially Aligned Nanofibers with Biomacromolecular Particles in a Density Gradient. Advanced Functional Materials, 2020, 30, 2002031.	14.9	43

Тоng Wu

#	Article	IF	CITATIONS
19	Polyethersulfone microfiltration membrane modified by an amphiphilic dithiolaneâ€containing copolymer for improving antiâ€proteinâ€fouling performance and rejection of nanoparticles. Polymers for Advanced Technologies, 2020, 31, 2816-2826.	3.2	5
20	Engraving the Surface of Electrospun Microfibers with Nanoscale Grooves Promotes the Outgrowth of Neurites and the Migration of Schwann Cells. Angewandte Chemie, 2020, 132, 15756-15762.	2.0	1
21	Engraving the Surface of Electrospun Microfibers with Nanoscale Grooves Promotes the Outgrowth of Neurites and the Migration of Schwann Cells. Angewandte Chemie - International Edition, 2020, 59, 15626-15632.	13.8	37
22	Spatiotemporally Controlling the Release of Biological Effectors Enhances Their Effects on Cell Migration and Neurite Outgrowth. Small Methods, 2020, 4, 2000125.	8.6	17
23	Moving Electrospun Nanofibers and Bioprinted Scaffolds toward Translational Applications. Advanced Healthcare Materials, 2020, 9, e1901761.	7.6	33
24	Membraneâ€Free Zn/MnO ₂ Flow Battery for Largeâ€Scale Energy Storage. Advanced Energy Materials, 2020, 10, 1902085.	19.5	111
25	Robust polyimide nano/microfibre aerogels welded by solvent-vapour for environmental applications. Royal Society Open Science, 2019, 6, 190596.	2.4	21
26	Photothermal Welding, Melting, and Patterned Expansion of Nonwoven Mats of Polymer Nanofibers for Biomedical and Printing Applications. Angewandte Chemie - International Edition, 2019, 58, 16416-16421.	13.8	39
27	Photothermal Welding, Melting, and Patterned Expansion of Nonwoven Mats of Polymer Nanofibers for Biomedical and Printing Applications. Angewandte Chemie, 2019, 131, 16568-16573.	2.0	8
28	Promoting the Outgrowth of Neurites on Electrospun Microfibers by Functionalization with Electrosprayed Microparticles of Fatty Acids. Angewandte Chemie, 2019, 131, 3988-3991.	2.0	5
29	Electrospun Nanofibers for Tissue Engineering. , 2019, , 719-734.		15
30	Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating. Materials Today Energy, 2019, 12, 129-135.	4.7	54
31	Promoting the Outgrowth of Neurites on Electrospun Microfibers by Functionalization with Electrosprayed Microparticles of Fatty Acids. Angewandte Chemie - International Edition, 2019, 58, 3948-3951.	13.8	32
32	Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nature Communications, 2019, 10, 2440.	12.8	156
33	Direct/Alternating Current Electrochemical Method for Removing and Recovering Heavy Metal from Water Using Graphene Oxide Electrode. ACS Nano, 2019, 13, 6431-6437.	14.6	181
34	Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chemical Reviews, 2019, 119, 5298-5415.	47.7	2,814
35	Amidoxime-Functionalized Macroporous Carbon Self-Refreshed Electrode Materials for Rapid and High-Capacity Removal of Heavy Metal from Water. ACS Central Science, 2019, 5, 719-726.	11.3	76
36	Polypyrrole-coated poly(l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous nerve guidance conduit induced nerve regeneration in rat. Materials Science and Engineering C, 2019, 94, 190-199.	7.3	73

Томс Wu

#	Article	IF	CITATIONS
37	General Method for Generating Circular Gradients of Active Proteins on Nanofiber Scaffolds Sought for Wound Closure and Related Applications. ACS Applied Materials & Interfaces, 2018, 10, 8536-8545.	8.0	43
38	In Situ Investigation on the Nanoscale Capture and Evolution of Aerosols on Nanofibers. Nano Letters, 2018, 18, 1130-1138.	9.1	65
39	Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Materials Science and Engineering C, 2018, 82, 121-129.	7.3	87
40	Morphology and property investigation of primary particulate matter particles from different sources. Nano Research, 2018, 11, 3182-3192.	10.4	54
41	Perspective: Aligned arrays of electrospun nanofibers for directing cell migration. APL Materials, 2018, 6, .	5.1	42
42	Design and Fabrication of a Biomimetic Vascular Scaffold Promoting in Situ Endothelialization and Tunica Media Regeneration. ACS Applied Bio Materials, 2018, 1, 833-844.	4.6	23
43	Enhancing the tactile and near-infrared sensing capabilities of electrospun PVDF nanofibers with the use of gold nanocages. Journal of Materials Chemistry C, 2018, 6, 10263-10269.	5.5	18
44	Sea-Sponge-like Structure of Nano-Fe ₃ O ₄ on Skeleton-C with Long Cycle Life under High Rate for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19656-19663.	8.0	56
45	Core–Shell Nanofibrous Materials with High Particulate Matter Removal Efficiencies and Thermally Triggered Flame Retardant Properties. ACS Central Science, 2018, 4, 894-898.	11.3	73
46	Fe–Au Nanoparticle oupling for Ultrasensitive Detections of Circulating Tumor DNA. Advanced Materials, 2018, 30, e1801690.	21.0	49
47	A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nature Energy, 2017, 2, .	39.5	388
48	Development of Dynamic Liquid and Conjugated Electrospun Poly(L-lactide-co-caprolactone)/Collagen Nanoyarns for Regulating Vascular Smooth Muscle Cells Growth. Journal of Biomedical Nanotechnology, 2017, 13, 303-312.	1.1	17
49	Application of a bilayer tubular scaffold based on electrospun poly(<scp>l</scp> -lactide-co-caprolactone)/collagen fibers and yarns for tracheal tissue engineering. Journal of Materials Chemistry B, 2017, 5, 139-150.	5.8	38
50	Laminin-coated nerve guidance conduits based on poly(<scp>l</scp> -lactide-co-glycolide) fibers and yarns for promoting Schwann cells' proliferation and migration. Journal of Materials Chemistry B, 2017, 5, 3186-3194.	5.8	50
51	Development of Nanofiber Sponges-Containing Nerve Guidance Conduit for Peripheral Nerve Regeneration in Vivo. ACS Applied Materials & Interfaces, 2017, 9, 26684-26696.	8.0	77
52	Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries. Nano Research, 2017, 10, 3754-3764.	10.4	78
53	Anti-CD133 antibody loaded bilayer tubular scaffold based on poly(L-lactide-co-caprolactone)/collagen nanofibers and nanoyarns for vascular tissue engineering. Journal of Controlled Release, 2017, 259, e129.	9.9	2
54	Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials, 2017, 141, 86-95.	11.4	220

Tong Wu

#	Article	IF	CITATIONS
55	Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton's jelly of human umbilical cord. Materials Science and Engineering C, 2017, 70, 637-645.	7.3	53
56	Nanofiber composites in tendon tissue engineering. , 2017, , 345-367.		2
57	Nanofiber composites in neural tissue engineering. , 2017, , 395-410.		2
58	Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation. Colloids and Surfaces B: Biointerfaces, 2016, 144, 108-117.	5.0	34
59	Polypyrrole-coated poly(<scp>l</scp> -lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation. Journal of Materials Chemistry B, 2016, 4, 6670-6679.	5.8	94
60	Fabrication of poly(ester-urethane)urea elastomer/gelatin electrospun nanofibrous membranes for potential applications in skin tissue engineering. RSC Advances, 2016, 6, 73636-73644.	3.6	23
61	A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Colloids and Surfaces B: Biointerfaces, 2016, 146, 632-641.	5.0	40
62	Preliminary study of a novel nanofiber-based valve integrated tubular graft as an alternative for a pulmonary valved artery. RSC Advances, 2016, 6, 84837-84846.	3.6	4
63	Regenerated collagen fibers with grooved surface texture: Physicochemical characterization and cytocompatibility. Materials Science and Engineering C, 2016, 58, 750-756.	7.3	14
64	Development of Dual Neurotrophins-Encapsulated Electrospun Nanofibrous Scaffolds for Peripheral Nerve Regeneration. Journal of Biomedical Nanotechnology, 2016, 12, 1987-2000.	1.1	11
65	Electrospun macroporous fibrous scaffolds. Journal of Controlled Release, 2015, 213, e60-e61.	9.9	1
66	Heparin and Vascular Endothelial Growth Factor Loaded Poly(L-lactide-co-caprolactone) Nanofiber Covered Stent-Graft for Aneurysm Treatment. Journal of Biomedical Nanotechnology, 2015, 11, 1947-1960.	1.1	46
67	A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning. Colloids and Surfaces B: Biointerfaces, 2015, 133, 179-188.	5.0	52
68	Electrospun poly(<scp>l</scp> -lactide-co-caprolactone)–collagen–chitosan vascular graft in a canine femoral artery model. Journal of Materials Chemistry B, 2015, 3, 5760-5768.	5.8	36
69	Nerve conduits constructed by electrospun P(LLA-CL) nanofibers and PLLA nanofiber yarns. Journal of Materials Chemistry B, 2015, 3, 8823-8831.	5.8	50
70	Fabrication and characterization of Mg/P(LLA-CL)-blended nanofiber scaffold. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1013-1027.	3.5	8
71	Injectable hydrogel incorporating with nanoyarn for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 168-180.	3.5	24
72	Disc-Electrospun Nano/Macro-Scale PCL Fibers with Nanoporous Structure. Advanced Materials Research, 2014, 893, 124-127.	0.3	0

Томс Wu

#	Article	IF	CITATIONS
73	Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology. Colloids and Surfaces B: Biointerfaces, 2014, 113, 101-106.	5.0	98
74	Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration. Colloids and Surfaces B: Biointerfaces, 2014, 121, 432-443.	5.0	78
75	Fabrication of cell penetration enhanced poly (l-lactic acid-co-É>-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning. Colloids and Surfaces B: Biointerfaces, 2014, 120, 47-54.	5.0	32
76	Rutherford Backscattering Spectroscopy Study of the Kinetics of Oxidation of (Mg, Fe)2SiO4. Journal of the American Ceramic Society, 1988, 71, 540-545.	3.8	38