
Jin-Pei Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1831426/publications.pdf Version: 2024-02-01

IIN-DEL CHENC

#	Article	IF	CITATIONS
1	Diazaphospholene-Catalyzed Hydrodefluorination of Polyfluoroarenes with Phenylsilane via Concerted Nucleophilic Aromatic Substitution. Journal of Organic Chemistry, 2022, 87, 294-300.	1.7	13
2	Recent progress in reactivity study and synthetic application of N-heterocyclic phosphorus hydrides. National Science Review, 2021, 8, nwaa253.	4.6	10
3	Thermodynamic and kinetic studies of hydride transfer from Hantzsch ester under the promotion of organic bases. Organic Chemistry Frontiers, 2021, 8, 876-882.	2.3	7
4	Quantitative Thermodynamic and Kinetic Parameters of Radical. Chinese Journal of Organic Chemistry, 2021, 41, 3892.	0.6	2
5	Access to <i>P</i> -stereogenic compounds <i>via</i> desymmetrizing enantioselective bromination. Chemical Science, 2021, 12, 4582-4587.	3.7	25
6	The Acidities of Nucleophilic Monofluoromethylation Reagents: An Anomalous αâ€Fluorine Effect. Angewandte Chemie - International Edition, 2021, 60, 9401-9406.	7.2	13
7	Chemoselective catalytic hydrodefluorination of trifluoromethylalkenes towards mono-/gem-di-fluoroalkenes under metal-free conditions. Nature Communications, 2021, 12, 2835.	5.8	54
8	Access to Axially and Centrally Chiral Sulfinamides via Asymmetric Allylic Alkylation. Organic Letters, 2021, 23, 3997-4001.	2.4	15
9	Catalytic Asymmetric Azaâ€Diels–Alder Reaction of Ketimines and Unactivated Dienes. Angewandte Chemie, 2021, 133, 17749-17755.	1.6	2
10	Catalytic Asymmetric Azaâ€Diels–Alder Reaction of Ketimines and Unactivated Dienes. Angewandte Chemie - International Edition, 2021, 60, 17608-17614.	7.2	25
11	Brönsted Basicities and Nucleophilicities of N-Heterocyclic Olefins in Solution: N-Heterocyclic Carbene versus N-Heterocyclic Olefin. Which Is More Basic, and Which Is More Nucleophilic?. Journal of Organic Chemistry, 2021, 86, 2974-2985.	1.7	23
12	Kinetic Resolution of Sulfinamides via Asymmetric <i>N</i> -Allylic Alkylation. Organic Letters, 2021, 23, 8499-8504.	2.4	4
13	Computational insights into the effects of reagent structure and bases on nucleophilic monofluoromethylation of aldehydes. Chinese Chemical Letters, 2021, , .	4.8	1
14	Quantification of the Activation Capabilities of Lewis/BrÃ,nsted Acid for Electrophilic Trifluoromethylthiolating Reagents ^{â€} . Chinese Journal of Chemistry, 2020, 38, 130-134.	2.6	10
15	Establishing Cation and Radical Donor Ability Scales of Electrophilic F, CF ₃ , and SCF ₃ Transfer Reagents. Accounts of Chemical Research, 2020, 53, 182-197.	7.6	70
16	Holistic Prediction of the p <i>K</i> _a in Diverse Solvents Based on a Machine‣earning Approach. Angewandte Chemie - International Edition, 2020, 59, 19282-19291.	7.2	116
17	Holistic Prediction of the p <i>K</i> _a in Diverse Solvents Based on a Machineâ€Learning Approach. Angewandte Chemie, 2020, 132, 19444-19453.	1.6	31
18	Diazaphosphinyl radical-catalyzed deoxygenation of α-carboxy ketones: a new protocol for chemo-selective C–O bond scission <i>via</i> mechanism regulation. Chemical Science, 2020, 11, 8476-8481.	3.7	20

#	Article	IF	CITATIONS
19	Bonding Energetics of Palladium Amido/Aryloxide Complexes in DMSO: Implications for Palladiumâ€Mediated Aniline Activation. Angewandte Chemie - International Edition, 2020, 59, 23782-23790.	7.2	8
20	Counterintuitive solvation effect of ionic-liquid/DMSO solvents on acidic C–H dissociation and insight into respective solvation. Chemical Science, 2020, 11, 3365-3370.	3.7	7
21	Predicting Absolute Rate Constants for Huisgen Reactions of Unsaturated Iminium Ions with Diazoalkanes. Angewandte Chemie - International Edition, 2020, 59, 12527-12533.	7.2	15
22	Diazaphosphinanes as hydride, hydrogen atom, proton or electron donors under transition-metal-free conditions: thermodynamics, kinetics, and synthetic applications. Chemical Science, 2020, 11, 3672-3679.	3.7	20
23	Enantioselective Allylation of Oxocarbenium Ions Catalyzed by Bi(OAc) ₃ /Chiral Phosphoric Acid. ACS Catalysis, 2020, 10, 8069-8076.	5.5	22
24	Toward Rational Understandings of α-C–H Functionalization: Energetic Studies of Representative Tertiary Amines. IScience, 2020, 23, 100851.	1.9	15
25	B(C 6 F 5) 3 /Chiral Phosphoric Acid Catalyzed Ketimine–Ene Reaction of 2â€Arylâ€3 H â€indolâ€3â€ones and αâ€Methylstyrenes. Angewandte Chemie, 2020, 132, 4580-4586.	1.6	10
26	Asymmetric Synthesis of Axially Chiral Phosphamides via Atroposelective <i>N</i> -Allylic Alkylation. ACS Catalysis, 2020, 10, 2324-2333.	5.5	50
27	B(C ₆ F ₅) ₃ /Chiral Phosphoric Acid Catalyzed Ketimine–Ene Reaction of 2â€Arylâ€3 <i>H</i> â€indolâ€3â€ones and αâ€Methylstyrenes. Angewandte Chemie - International Edition, 20 4550-4556.	210259,	40
28	Unexpected Strong Acidity Enhancing the Effect in Protic Ionic Liquids Quantified by Equilibrium Acidity Studies: A Crucial Role of Cation Structures on Dictating the Solvation Properties. Journal of Organic Chemistry, 2020, 85, 3041-3049.	1.7	9
29	Exploiting the radical reactivity of diazaphosphinanes in hydrodehalogenations and cascade cyclizations. Chemical Science, 2020, 11, 4786-4790.	3.7	17
30	Direct C–H difluoromethylation of heterocycles via organic photoredox catalysis. Nature Communications, 2020, 11, 638.	5.8	103
31	Recent Progress in Equilibrium Acidity Studies of Organocatalysts. Synlett, 2019, 30, 1940-1949.	1.0	12
32	Bi(III)-Catalyzed Enantioselective Allylation Reactions of Ketimines. IScience, 2019, 16, 511-523.	1.9	23
33	Dynamic Kinetic Resolution of Axially Chiral Naphthamides via Atroposelective Allylic Alkylation Reaction. Organic Letters, 2019, 21, 5495-5499.	2.4	13
34	Quinine-derived thiourea promoted enantioselective Michael addition reactions of 3-substituted phthalides to maleimides. Science China Chemistry, 2019, 62, 649-652.	4.2	5
35	Mechanism and Origins of Enantioselectivities in Spirobiindane-Based Hypervalent Iodine(III)-Induced Asymmetric Dearomatizing Spirolactonizations. Journal of the American Chemical Society, 2019, 141, 16046-16056.	6.6	52
36	Metal-Free Direct C–H Cyanoalkylation of Quinoxalin-2(1H)-Ones by Organic Photoredox Catalysis. Journal of Organic Chemistry, 2019, 84, 7786-7795.	1.7	58

Jin-Pei Cheng

#	Article	IF	CITATIONS
37	Visible-Light-Triggered Cyanoalkylation of <i>para</i> -Quinone Methides and Its Application to the Synthesis of GPR40 Agonists. Organic Letters, 2019, 21, 4137-4142.	2.4	43
38	Understanding the role of thermodynamics in catalytic imine reductions. Chemical Society Reviews, 2019, 48, 2913-2926.	18.7	31
39	Catalyst-free amination of α-cyanoarylacetates enabled by single-electron transfer. Organic Chemistry Frontiers, 2019, 6, 1900-1904.	2.3	5
40	Access to P-chiral phosphine oxides by enantioselective allylic alkylation of bisphenols. Chemical Science, 2019, 10, 4322-4327.	3.7	41
41	A Nucleophilicity Scale for the Reactivity of Diazaphospholenium Hydrides: Structural Insights and Synthetic Applications. Angewandte Chemie - International Edition, 2019, 58, 5983-5987.	7.2	29
42	Origin of Stereocontrol in Photoredox Organocatalysis of Asymmetric α-Functionalizations of Aldehydes. Journal of Organic Chemistry, 2018, 83, 3333-3338.	1.7	11
43	Unexpected solvation-stabilisation of ions in a protic ionic liquid: insights disclosed by a bond energetic study. Chemical Science, 2018, 9, 3538-3543.	3.7	16
44	Ordering the relative power of electrophilic fluorinating, trifluoromethylating, and trifluoromethylthiolating reagents: A summary of recent efforts. Tetrahedron Letters, 2018, 59, 1278-1285.	0.7	44
45	Organocatalytic Asymmetric Sequential 1,6-Addition/Acetalization of 1-Oxotetralin-2-carbaldehyde to <i>ortho</i> -Hydroxyphenyl-Substituted <i>para</i> -Quinone Methides for Synthesis of Spiro-3,4-dihydrocoumarins. Journal of Organic Chemistry, 2018, 83, 2714-2724.	1.7	62
46	N-Heterocyclic carbene promoted enantioselective desymmetrization reaction of diarylalkane-bisphenols. Organic Chemistry Frontiers, 2018, 5, 1101-1107.	2.3	11
47	Equilibrium Acidities of Nitroalkanes in an Ionic Liquid. Journal of Organic Chemistry, 2018, 83, 14962-14968.	1.7	7
48	Atroposelective Catalytic Asymmetric Allylic Alkylation Reaction for Axially Chiral Anilides with Achiral Morita–Baylis–Hillman Carbonates. Journal of the American Chemical Society, 2018, 140, 12836-12843.	6.6	108
49	Exploration of the Synthetic Potential of Electrophilic Trifluoromethylthiolating and Difluoromethylthiolating Reagents. Angewandte Chemie - International Edition, 2018, 57, 12690-12695.	7.2	48
50	Recent Advances and Advisable Applications of Bond Energetics in Organic Chemistry. Journal of the American Chemical Society, 2018, 140, 8611-8623.	6.6	44
51	CO2 Absorption by DBU-Based Protic Ionic Liquids: Basicity of Anion Dictates the Absorption Capacity and Mechanism. Frontiers in Chemistry, 2018, 6, 658.	1.8	20
52	Computational Study of the Trifluoromethyl Radical Donor Abilities of CF ₃ Sources. Acta Chimica Sinica, 2018, 76, 988.	0.5	6
53	Enantioselective Organocatalyzed Vinylogous Michael Reactions of 3-Alkylidene Oxindoles with Enals. Journal of Organic Chemistry, 2017, 82, 1412-1419.	1.7	26
54	Theoretical study of Lewis acid activation models for hypervalent fluoroiodane reagent: The generality of "F-coordination―activation model. Tetrahedron Letters, 2017, 58, 1287-1291.	0.7	32

#	Article	IF	CITATIONS
55	The Essential Role of Bond Energetics in C–H Activation/Functionalization. Chemical Reviews, 2017, 117, 8622-8648.	23.0	369
56	Study on the Catalytic Behavior of Bifunctional Hydrogenâ€Bonding Catalysts Guided by Free Energy Relationship Analysis of Steric Parameters. Chemistry - A European Journal, 2017, 23, 5488-5497.	1.7	19
57	A Systematic Evaluation of the N–F Bond Strength of Electrophilic N–F Reagents: Hints for Atomic Fluorine Donating Ability. Journal of Organic Chemistry, 2017, 82, 4129-4135.	1.7	40
58	Design and Applications of <i>N</i> - <i>tert</i> Butyl Sulfinyl Squaramide Catalysts. Organic Letters, 2017, 19, 1926-1929.	2.4	18
59	A Systematic Assessment of Trifluoromethyl Radical Donor Abilities of Electrophilic Trifluoromethylating Reagents. Asian Journal of Organic Chemistry, 2017, 6, 235-240.	1.3	26
60	Mechanism and Origins of Stereoinduction in Natural Cinchona Alkaloid Catalyzed Asymmetric Electrophilic Trifluoromethylthiolation of β-Keto Esters with <i>N</i> -Trifluoromethylthiophthalimide as Electrophilic SCF ₃ Source. ACS Catalysis, 2017, 7, 7977-7986.	5.5	35
61	An Acidity Scale of Triazolium-Based NHC Precursors in DMSO. Journal of Organic Chemistry, 2017, 82, 9675-9681.	1.7	38
62	Origin of Stereoselectivity of the Photoinduced Asymmetric Phase-Transfer-Catalyzed Perfluoroalkylation of β-Ketoesters. Journal of Organic Chemistry, 2017, 82, 9321-9327.	1.7	36
63	Establishing the Trifluoromethylthio Radical Donating Abilities of Electrophilic SCF ₃ -Transfer Reagents. Journal of Organic Chemistry, 2017, 82, 8697-8702.	1.7	29
64	<i>N</i> - <i>tert</i> -Butyl Sulfinyl Squaramide Receptors for Anion Recognition through Assisted <i>tert</i> -Butyl C–H Hydrogen Bonding. Journal of Organic Chemistry, 2017, 82, 8662-8667.	1.7	26
65	Chirality Sensing of α-Hydroxyphosphonates by <i>N</i> - <i>tert</i> Butyl Sulfinyl Squaramide. Organic Letters, 2017, 19, 4191-4194.	2.4	11
66	Synthesis of porous polymer/tissue paper hybrid membranes for switchable oil/water separation. Scientific Reports, 2017, 7, 3101.	1.6	21
67	Asymmetric Conjugate Addition of Benzofuranâ€2â€ones to Alkyl 2â€Phthalimidoacrylates: Modeling Structure–Stereoselectivity Relationships with Steric and Electronic Parameters. Angewandte Chemie - International Edition, 2016, 55, 6506-6510.	7.2	47
68	9,10-Dicyanoanthracene Catalyzed Decarboxylative Alkynylation of Carboxylic Acids under Visible-Light Irradiation. Journal of Organic Chemistry, 2016, 81, 12357-12363.	1.7	53
69	Weakly Polar Aprotic Ionic Liquids Acting as Strong Dissociating Solvent: A Typical "lonic Liquid Effect―Revealed by Accurate Measurement of Absolute p <i>K</i> _a of Ylide Precursor Salts. Journal of the American Chemical Society, 2016, 138, 5523-5526.	6.6	44
70	Comprehensive Energetic Scale for Quantitatively Estimating the Fluorinating Potential of N–F Reagents in Electrophilic Fluorinations. Journal of Organic Chemistry, 2016, 81, 4280-4289.	1.7	50
71	Mechanism and Origin of the Unexpected Chemoselectivity in Fluorocyclization of <i>o</i> -Styryl Benzamides with a Hypervalent Fluoroiodane Reagent. Journal of Organic Chemistry, 2016, 81, 9006-9011.	1.7	45
72	Equilibrium acidities of BINOL type chiral phenolic hydrogen bonding donors in DMSO. Organic Chemistry Frontiers, 2016, 3, 1154-1158.	2.3	11

#	Article	IF	CITATIONS
73	Absolute pKas of Sulfonamides in Ionic Liquids: Comparisons to Molecular Solvents. Journal of Organic Chemistry, 2016, 81, 11195-11200.	1.7	13
74	Mechanism of Silver-Mediated Geminal Difluorination of Styrenes with a Fluoroiodane Reagent: Insights into Lewis-Acid-Activation Model. Organic Letters, 2016, 18, 6128-6131.	2.4	59
75	Asymmetric Conjugate Addition of Benzofuranâ€2â€ones to Alkyl 2â€Phthalimidoacrylates: Modeling Structure–Stereoselectivity Relationships with Steric and Electronic Parameters. Angewandte Chemie, 2016, 128, 6616-6620.	1.6	16
76	Phosphoric Acid Catalyzed Asymmetric 1,6â€Conjugate Addition of Thioacetic Acid to <i>para</i> â€Quinone Methides. Angewandte Chemie, 2016, 128, 1482-1486.	1.6	47
77	Phosphoric Acid Catalyzed Asymmetric 1,6â€Conjugate Addition of Thioacetic Acid to <i>para</i> â€Quinone Methides. Angewandte Chemie - International Edition, 2016, 55, 1460-1464.	7.2	202
78	An Energetic Guide for Estimating Trifluoromethyl Cation Donor Abilities of Electrophilic Trifluoromethylating Reagents: Computations of X–CF ₃ Bond Heterolytic Dissociation Enthalpies. Journal of Organic Chemistry, 2016, 81, 3119-3126.	1.7	48
79	Amination of 3-Substituted Benzofuran-2(3 <i>H</i>)-ones Triggered by Single-Electron Transfer. Organic Letters, 2016, 18, 1036-1039.	2.4	31
80	Equilibrium acidities of cinchona alkaloid organocatalysts bearing 6′-hydrogen bonding donors in DMSO. Organic Chemistry Frontiers, 2016, 3, 170-176.	2.3	10
81	Quantitative Scale for the Trifluoromethylthio Cation-Donating Ability of Electrophilic Trifluoromethylthiolating Reagents. Organic Letters, 2016, 18, 264-267.	2.4	77
82	A Highly Efficient Chirality Switchable Synthesis of Dihydropyranâ€Fused Benzofurans by Fineâ€Tuning the Phenolic Proton of βâ€Isocupreidine (βâ€ICD) Catalyst with Methyl. Chemistry - A European Journal, 2015, 21, 10443-10449.	1.7	22
83	Equilibrium Acidities of Proline Derived Organocatalysts in DMSO. Organic Letters, 2015, 17, 1196-1199.	2.4	25
84	An asymmetric allylic alkylation reaction of 3-alkylidene oxindoles. Chemical Communications, 2015, 51, 14342-14345.	2.2	32
85	ls Amine a Stronger Base in Ionic Liquid Than in Common Molecular Solvent? An Accurate Basicity Scale of Amines. Journal of Organic Chemistry, 2015, 80, 8384-8389.	1.7	21
86	Enantioselective Synthesis of Dihydropyran-Fused Indoles through [4+2] Cycloaddition between Allenoates and 3-Olefinic Oxindoles. Journal of Organic Chemistry, 2015, 80, 5279-5286.	1.7	51
87	Organic Photocatalytic Cyclization of Polyenes: A Visible‣ightâ€Mediated Radical Cascade Approach. Chemistry - A European Journal, 2015, 21, 14723-14727.	1.7	28
88	Toward Prediction of the Chemistry in Ionic Liquids: An Accurate Computation of Absolute p <i>K</i> _a Values of Benzoic Acids and Benzenethiols. Journal of Organic Chemistry, 2015, 80, 8997-9006.	1.7	19
89	Catalytic Asymmetric Synthesis of Chiral Benzofuranones. Advanced Synthesis and Catalysis, 2014, 356, 1172-1198.	2.1	63
90	Double-Line Hammett Relationship Revealed through Precise Acidity Measurement of Benzenethiols in Neat Ionic Media: A Typical "lonic Liquid Effect� Organic Letters, 2014, 16, 5744-5747	2.4	22

#	Article	lF	CITATIONS
91	Computation of standard equilibrium acidity of C–H acids in ionic media: shedding light on predicting changes of chemical behavior by switching solvent system from molecular to ionic. Organic Chemistry Frontiers, 2014, 1, 176.	2.3	5
92	Squaramide Equilibrium Acidities in DMSO. Organic Letters, 2014, 16, 1786-1789.	2.4	106
93	Standard and Absolute p <i>K</i> _a Scales of Substituted Benzoic Acids in Room Temperature Ionic Liquids. Journal of Organic Chemistry, 2013, 78, 12487-12493.	1.7	41
94	Synthesis of Optically Enriched Spirocyclic Benzofuranâ€2â€ones by Bifunctional Thioureaâ€Base Catalyzed Doubleâ€Michael Addition of Benzofuranâ€2â€ones to Dienones. Chemistry - an Asian Journal, 2013, 8, 997-1003.	1.7	48
95	Mechanism and Selectivity of Bioinspired Cinchona Alkaloid Derivatives Catalyzed Asymmetric Olefin Isomerization: A Computational Study. Journal of the American Chemical Society, 2013, 135, 7462-7473.	6.6	69
96	Standard pKa Scales of Carbon-Centered Indicator Acids in Ionic Liquids: Effect of Media and Structural Implication. Journal of Organic Chemistry, 2012, 77, 7291-7298.	1.7	45
97	Asymmetric Michael Addition Reactions between 3â€Substituted Benzofuranâ€2(3 <i>H</i>)â€ones and 1,1â€Bis(phenylsulfonyl)ethylene Catalyzed by Bifunctional Catalysts Containing Tertiary Amine and Thiourea Groups. European Journal of Organic Chemistry, 2012, 2012, 1774-1782.	1.2	40
98	Chiral Biscinchona Alkaloid Promoted Asymmetric Allylic Alkylation of 3-Substituted Benzofuran-2(3 <i>H</i>)-ones with Morita–Baylis–Hillman Carbonates. Journal of Organic Chemistry, 2011, 76, 5838-5845.	1.7	56
99	Chiral pyrrolidine-azole conjugates: Simple and efficient asymmetric organocatalysts for Michael addition to nitrostyrenes. Science Bulletin, 2010, 55, 1735-1741.	1.7	2
100	A soluble polymer-supported NADH model: Synthesis and application. Science Bulletin, 2010, 55, 2824-2828.	1.7	2
101	A molecular half-adder and half-subtractor based on pyrylium. Science Bulletin, 2010, 55, 2799-2802.	1.7	1
102	Functionalized Chiral Ionic Liquid Catalyzed Asymmetric S _N 1 αâ€Alkylation of Ketones and Aldehydes. European Journal of Organic Chemistry, 2010, 2010, 4876-4885.	1.2	31
103	Chiral Primary Amine Catalyzed Asymmetric Epoxidation of α‧ubstituted Acroleins. European Journal of Organic Chemistry, 2010, 2010, 6840-6849.	1.2	32
104	Asymmetric Michael Addition Reaction of 3â€Substituted Oxindoles to Nitroolefins Catalyzed by a Chiral Alkyl―Substituted Thiourea Catalyst. Advanced Synthesis and Catalysis, 2010, 352, 416-424.	2.1	109
105	Highly Enantioselective Michael Addition Reactions of 3â€Substituted Benzofuranâ€2(3 <i>H</i>)â€ones to Chalcones Catalyzed by a Chiral Alkylâ€Substituted Thiourea. Advanced Synthesis and Catalysis, 2010, 352, 1097-1101.	2.1	53
106	Physical Organic Study of Structure–Activity–Enantioselectivity Relationships in Asymmetric Bifunctional Thiourea Catalysis: Hints for the Design of New Organocatalysts. Chemistry - A European Journal, 2010, 16, 450-455.	1.7	121
107	Chiral Amine–Polyoxometalate Hybrids as Recoverable Asymmetric Enamine Catalysts under Neat and Aqueous Conditions. European Journal of Organic Chemistry, 2009, 2009, 132-140.	1.2	23
108	Chiral Primary Amine–Polyoxometalate Acid Hybrids as Asymmetric Recoverable Iminiumâ€Based Catalysts. European Journal of Organic Chemistry, 2009, 2009, 4486-4493.	1.2	40

#	Article	IF	CITATIONS
109	Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions. Green Chemistry, 2009, 11, 455.	4.6	236
110	A Facile Aqueous Synthesis of Bis(indolâ€3â€yl)alkanes Catalyzed by Dodecylbenzenesulfonic Acid. Chinese Journal of Chemistry, 2008, 26, 2228-2232.	2.6	23
111	Organocatalytic Three omponent Reactions of Pyruvate, Aldehyde and Aniline by Hydrogenâ€Bonding Catalysts. European Journal of Organic Chemistry, 2008, 2008, 4350-4356.	1.2	54
112	Hydride, Hydrogen Atom, Proton, and Electron Transfer Driving Forces of Various Five-Membered Heterocyclic Organic Hydrides and Their Reaction Intermediates in Acetonitrile. Journal of the American Chemical Society, 2008, 130, 2501-2516.	6.6	309
113	Quadruple hydrogen bonded self-assemblies of 5,5′-bisdiazo-dipyrromethane. CrystEngComm, 2008, 10, 957.	1.3	11
114	An Acidity Scale of 1,3-Dialkylimidazolium Salts in Dimethyl Sulfoxide Solution. Journal of Organic Chemistry, 2007, 72, 7790-7793.	1.7	188
115	Computation of pKaValues of Substituted Aniline Radical Cations in Dimethylsulfoxide Solution. Journal of Physical Chemistry A, 2007, 111, 9978-9987.	1.1	46
116	Theoretical Prediction of the Hydride Affinities of Variousp- ando-Quinones in DMSO. Journal of Organic Chemistry, 2007, 72, 945-956.	1.7	35
117	Magnetic Nanoparticleâ€Supported Morita–Baylis–Hillman Catalysts. Advanced Synthesis and Catalysis, 2007, 349, 2431-2434.	2.1	98
118	Pseudo-Polymorphs of N,N′-Bis(4-nitrophenyl)-2,6-Pyridinedicarboxamide. Structural Chemistry, 2005, 16, 641-647.	1.0	6
119	Polymethylene-bridged Cystine–Glycine-containing Cyclopeptides as Hydrogen-bonding Electroneutral Anion Receptors: Design, Synthesis, and Halide Ion Recognition. Supramolecular Chemistry, 2004, 16, 171-174.	1.5	8
120	Ytterbium Triflate Catalyzed Reactions of Epoxide with Nitrogen Heterocycles Under Solvent-Free Condition. Synthetic Communications, 2003, 33, 2989-2994.	1.1	13
121	DFT study of inner-sphere electron transfer in a gas-phase SN2 reaction at the saturated carbon. Physical Chemistry Chemical Physics, 2002, 4, 4669-4677.	1.3	7
122	An Old but Simple and Efficient Method to Elucidate the Oxidation Mechanism of NAD(P)H Model 1-Aryl-1,4-dihydronicotinamides by Cations 2-Methyl-5-nitroisoquinolium, Tropylium, and Xanthylium in Aqueous Solution. Journal of Organic Chemistry, 2001, 66, 370-375.	1.7	38
123	On the Direction and Magnitude of Radical Substituent Effects:Â The Role of Polar Interaction on Thermodynamic Stabilities of Benzylic Câ~'H Bonds and Related Carbon Radicals. Journal of Organic Chemistry, 2001, 66, 1466-1472.	1.7	40
124	Heterolytic and Homolytic Nâ^'H Bond Dissociation Energies of 4-Substituted Hantzsch 2,6-Dimethyl-1,4-dihydropyridines and the Effect of One-Electron Transfer on the Nâ^'H Bond Activation. Journal of Organic Chemistry, 2000, 65, 3853-3857.	1.7	58
125	Mechanisms of the Oxidations of NAD(P)H Model Hantzsch 1,4-Dihydropyridines by Nitric Oxide and Its DonorN-Methyl-N-nitrosotoluene-p-sulfonamide. Journal of Organic Chemistry, 2000, 65, 8158-8163.	1.7	74
126	A detailed investigation into the oxidation mechanism of Hantzsch 1,4-dihydropyridines by ethyl α-cyanocinnamates and benzylidenemalononitriles. Perkin Transactions II RSC, 2000, , 1857-1861.	1.1	33

#	Article	IF	CITATIONS
127	The First Oâ^'NO Bond Energy Scale in Solution:  Heterolytic and Homolytic Cleavage Enthalpies ofO-Nitrosyl Carboxylate Compounds. Organic Letters, 2000, 2, 265-268.	2.4	23
128	Homolytic Cleavage Energies of Râ [~] 'H Bonds Centered on Carbon Atoms of High Electronegativity:Â First General Observations ofO-type Variation on Câ [~] 'H BDEs and the Implication for the Governing Factors Leading to the DistinctO/SPatterns of Radical Substituent Effects. Journal of the American Chemical Society, 2000, 122, 9987-9992.	6.6	34
129	Nâ°'NO Bond Dissociation Energies ofN-Nitroso Diphenylamine Derivatives (Or Analogues) and Their Radical Anions:Â Implications for the Effect of Reductive Electron Transfer on Nâ°'NO Bond Activation and for the Mechanisms of NO Transfer to Nitranions. Journal of Organic Chemistry, 2000, 65, 6729-6735.	1.7	56
130	Effects of Adjacent Onium Cations and Remote Substituents on the Hâ^'A+ Bond Equilibrium Acidities in Dimethyl Sulfoxide Solution. An Extensive Ylide Thermodynamic Stability Scale and Implication for the Importance of Resonance Effect on Ylide Stabilities. Journal of Organic Chemistry, 1999, 64, 604-610.	1.7	41
131	Is NO (Nitric Oxide) an Electron Acceptor or an Electrophile? A Detailed Thermodynamic Investigation on the Mechanisms of NO-Initiated Reactions with 3,6-Dibromocarbazolide Anion and Related Carbanion. Journal of Organic Chemistry, 1999, 64, 4187-4190.	1.7	13
132	Revisiting the Reactions of Phenyl(trihalomethyl)mercury with Tetraphenylcyclone (TPCP). Journal of Chemical Research, 1999, 23, 348-349.	0.6	0
133	Equilibrium acidities and homolytic bond dissociation enthalpies ofm- andp-substituted benzaldoximes and phenyl methyl ketoximes. Journal of Physical Organic Chemistry, 1998, 11, 10-14.	0.9	13
134	Synthesis Of A New Series Of Cyclic Pseudopeptides Containing Pyridine As Backbone Modifier. Synthetic Communications, 1998, 28, 4639-4647.	1.1	10
135	Heterolytic and Homolytic Yâ^'NO Bond Energy Scales of Nitroso-Containing Compounds:Â Chemical Origin of NO Release and NO Capture. Journal of the American Chemical Society, 1998, 120, 10266-10267.	6.6	80
136	Equilibrium Acidities and Homolytic Bond Dissociation Enthalpies of the Acidic Câ^'H Bonds inAs-Substituted Triphenylarsonium and Related Cations1. Journal of Organic Chemistry, 1998, 63, 7072-7077.	1.7	16
137	Energetics of Multistep versus One-step Hydride Transfer Reactions of Reduced Nicotinamide Adenine Dinucleotide (NADH) Models with Organic Cations andp-Quinones. Journal of Organic Chemistry, 1998, 63, 6108-6114.	1.7	94
138	Equilibrium Acidities and Homolytic Bond Dissociation Energies (BDEs) of the Acidic Hâ^'N Bonds in Hydrazines and Hydrazides. Journal of the American Chemical Society, 1997, 119, 9125-9129.	6.6	66
139	Electrochemical behaviour of ferrocenyl-containing acyl thiourea derivatives. Transition Metal Chemistry, 1997, 22, 281-283.	0.7	14
140	Kinetic, thermodynamic and mechanistic studies on the reduction of carbenium ions by NAD(P)H analogues. Journal of Physical Organic Chemistry, 1997, 10, 577-584.	0.9	18
141	Bond dissociation energies of the nitrogen-hydrogen bonds in anilines and in the corresponding radical anions. Equilibrium acidities of aniline radical cations. Journal of Organic Chemistry, 1993, 58, 6410-6416.	1.7	156
142	Acidities of radical cations derived from arylacetonitriles. Journal of Physical Organic Chemistry, 1988, 1, 209-223.	0.9	61
143	Homolytic bond dissociation energies in solution from equilibrium acidity and electrochemical data. Journal of the American Chemical Society, 1988, 110, 1229-1231.	6.6	233
144	Acidities of radical cations derived from cyclopentadienes and 3-aryl-1,1,5,5-tetraphenyl-1,4-pentadienes. Journal of the American Chemical Society, 1988, 110, 2872-2877.	6.6	40