Wei Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1829701/publications.pdf

Version: 2024-02-01

		10373	12585
142	18,278	72	132
papers	citations	h-index	g-index
150	150	150	18600
all docs	docs citations	times ranked	citing authors
an does	does citations	tilles rankeu	citing authors

#	Article	IF	CITATIONS
1	Tailoring Aggregation Extent of Photosensitizers to Boost Phototherapy Potency for Eliciting Systemic Antitumor Immunity. Advanced Materials, 2022, 34, e2106390.	11.1	65
2	Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nature Reviews Cardiology, 2022, 19, 228-249.	6.1	171
3	Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharmaceutica Sinica B, 2022, 12, 2206-2223.	5.7	52
4	RNA cancer nanomedicine: nanotechnology-mediated RNA therapy. Nanoscale, 2022, 14, 4448-4455.	2.8	28
5	Polyphenol-based hydrogels: Pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioactive Materials, 2022, 17, 49-70.	8.6	64
6	Intravesical delivery of <i>KDM6A</i> -mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	87
7	DNAâ€Damageâ€Responseâ€Targeting Mitochondriaâ€Activated Multifunctional Prodrug Strategy for Selfâ€Defensive Tumor Therapy. Angewandte Chemie, 2022, 134, .	1.6	8
8	Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages. Nature Protocols, 2022, 17, 748-780.	5 . 5	52
9	Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nature Communications, 2022, 13, 1413.	5.8	78
10	Theranostic Nanomedicine in the NIR-II Window: Classification, Fabrication, and Biomedical Applications. Chemical Reviews, 2022, 122, 5405-5407.	23.0	45
11	Engineered nanoparticles enable deep proteomics studies at scale by leveraging tunable nano–bio interactions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2106053119.	3.3	29
12	Titelbild: DNAâ€Damageâ€Responseâ€Targeting Mitochondriaâ€Activated Multifunctional Prodrug Strategy for Selfâ€Defensive Tumor Therapy (Angew. Chem. 16/2022). Angewandte Chemie, 2022, 134, .	1.6	0
13	2D materials-based nanomedicine: From discovery to applications. Advanced Drug Delivery Reviews, 2022, 185, 114268.	6.6	53
14	A facile and general method for synthesis of antibiotic-free protein-based hydrogel: Wound dressing for the eradication of drug-resistant bacteria and biofilms. Bioactive Materials, 2022, 18, 446-458.	8.6	54
15	Emerging mRNA technologies: delivery strategies and biomedical applications. Chemical Society Reviews, 2022, 51, 3828-3845.	18.7	76
16	Blood-brain barrier–penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Science Advances, 2022, 8, eabm8011.	4.7	71
17	Nonâ€Invasive Thermal Therapy for Tissue Engineering and Regenerative Medicine. Small, 2022, 18, e2107705.	5. 2	36
18	Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chemical Society Reviews, 2022, 51, 4996-5041.	18.7	179

#	Article	IF	CITATIONS
19	Lipid nanoparticles for mRNA therapy: recent advances in targeted delivery. , 2022, 1, 21-23.		4
20	Insights from nanotechnology in COVID-19 treatment. Nano Today, 2021, 36, 101019.	6.2	146
21	Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials, 2021, 266, 120431.	5.7	131
22	Biologically modified nanoparticles as theranostic bionanomaterials. Progress in Materials Science, 2021, 118, 100768.	16.0	108
23	Nano–Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection. Accounts of Chemical Research, 2021, 54, 291-301.	7.6	95
24	Editorial: Emerging Micro- and Nanotechnologies for Medical and Pharmacological Applications. Frontiers in Pharmacology, 2021, 12, 648749.	1.6	6
25	Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. Nature Communications, 2021, 12, 1124.	5.8	227
26	Staneneâ€Based Nanosheets for βâ€Elemene Delivery and Ultrasoundâ€Mediated Combination Cancer Therapy. Angewandte Chemie - International Edition, 2021, 60, 7155-7164.	7.2	113
27	ODC (Ornithine Decarboxylase)-Dependent Putrescine Synthesis Maintains MerTK (MER) Tj ETQq1 1 0.784314 rg Biology, 2021, 41, e144-e159.	BT /Overlo 1.1	ck 10 Tf 50 23
28	Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharmaceutica Sinica B, 2021, 11, 4045-4054.	5.7	96
29	Cryogenic Exfoliation of 2D Stanene Nanosheets for Cancer Theranostics. Nano-Micro Letters, 2021, 13, 90.	14.4	43
30	One-step and facile synthesis of peptide-like poly(melphalan) nanodrug for cancer therapy. Nano Today, 2021, 37, 101098.	6.2	19
31	Biomedical applications of 2D monoelemental materials formed by group VA and VIA: a concise review. Journal of Nanobiotechnology, 2021, 19, 96.	4.2	30
32	Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy. Acta Pharmaceutica Sinica B, 2021, 11, 3447-3464.	5.7	35
33	Black Phosphorus in Biological Applications: Evolutionary Journey from Monoelemental Materials to Composite Materials. Accounts of Materials Research, 2021, 2, 489-500.	5.9	57
34	Arsenene Nanodots with Selective Killing Effects and their Lowâ€Dose Combination with ßâ€Elemene for Cancer Therapy. Advanced Materials, 2021, 33, e2102054.	11.1	93
35	Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. Nature Communications, 2021, 12, 4777.	5.8	144
36	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	5.4	27

#	Article	IF	CITATIONS
37	Arsenene Nanodots with Selective Killing Effects and their Lowâ€Dose Combination with ßâ€Elemene for Cancer Therapy (Adv. Mater. 37/2021). Advanced Materials, 2021, 33, 2170292.	11.1	15
38	Interleukinâ€33 is a Novel Immunosuppressor that Protects Cancer Cells from TIL Killing by a Macrophageâ€Mediated Shedding Mechanism. Advanced Science, 2021, 8, 2101029.	5.6	20
39	Ca2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis. Bioactive Materials, 2021, 6, 4053-4064.	8.6	80
40	Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine. Chemical Society Reviews, 2021, 50, 2260-2279.	18.7	106
41	Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chemical Society Reviews, 2021, 50, 12883-12896.	18.7	108
42	Biomaterials and nanomedicine for bone regeneration: Progress and future prospects. Exploration, 2021, 1, 20210011.	5.4	90
43	Intercalation-Driven Formation of siRNA Nanogels for Cancer Therapy. Nano Letters, 2021, 21, 9706-9714.	4.5	33
44	Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. Science Advances, 2021, 7, eabi9265.	4.7	88
45	Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metabolism, 2021, 33, 2445-2463.e8.	7.2	98
46	An antimonene/Cp*Rh(phen)Cl/black phosphorus hybrid nanosheet-based Z-scheme artificial photosynthesis for enhanced photo/bio-catalytic CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 323-333.	5.2	71
47	Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy. Biomaterials, 2020, 234, 119760.	5.7	89
48	Triangle-Shaped Tellurium Nanostars Potentiate Radiotherapy by Boosting Checkpoint Blockade Immunotherapy. Matter, 2020, 3, 1725-1753.	5.0	74
49	Ultrasound mediated therapy: Recent progress and challenges in nanoscience. Nano Today, 2020, 35, 100949.	6.2	153
50	Blood-brain barrier–penetrating siRNA nanomedicine for Alzheimer's disease therapy. Science Advances, 2020, 6, .	4.7	135
51	A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860.	23.3	228
52	Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine, 2020, 56, 102821.	2.7	103
53	Sensitive, Rapid, Low-Cost, and Multiplexed COVID-19 Monitoring by the Wireless Telemedicine Platform. Matter, 2020, 3, 1818-1820.	5.0	27
54	Oral Insulin Delivery Platforms: Strategies To Address the Biological Barriers. Angewandte Chemie - International Edition, 2020, 59, 19787-19795.	7.2	88

#	Article	IF	Citations
55	siRNA nanoparticles targeting CaMKII \hat{I}^3 in lesional macrophages improve atherosclerotic plaque stability in mice. Science Translational Medicine, 2020, 12, .	5.8	132
56	In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28667-28677.	3.3	244
57	Visualization of human T lymphocyte-mediated eradication of cancer cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22910-22919.	3.3	32
58	Rücktitelbild: Plattformen für die orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren (Angew. Chem. 45/2020). Angewandte Chemie, 2020, 132, 20424-20424.	1.6	1
59	Plattformen f $ ilde{A}$ ½r die orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren. Angewandte Chemie, 2020, 132, 19955-19964.	1.6	5
60	Dual Hypoxia-Targeting RNAi Nanomedicine for Precision Cancer Therapy. Nano Letters, 2020, 20, 4857-4863.	4.5	42
61	Germanene-Based Theranostic Materials for Surgical Adjuvant Treatment: Inhibiting Tumor Recurrence and Wound Infection. Matter, 2020, 3, 127-144.	5.0	190
62	Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy. Nature Communications, 2020, 11, 2778.	5.8	233
63	ROS-Mediated Selective Killing Effect of Black Phosphorus: Mechanistic Understanding and Its Guidance for Safe Biomedical Applications. Nano Letters, 2020, 20, 3943-3955.	4.5	158
64	Phosphorus Science-Oriented Design and Synthesis of Multifunctional Nanomaterials for Biomedical Applications. Matter, 2020, 2, 297-322.	5.0	165
65	Charge Conversional Biomimetic Nanocomplexes as a Multifunctional Platform for Boosting Orthotopic Glioblastoma RNAi Therapy. Nano Letters, 2020, 20, 1637-1646.	4.5	102
66	Synthesis of Ultrathin Biotite Nanosheets as an Intelligent Theranostic Platform for Combination Cancer Therapy. Advanced Science, 2019, 6, 1901211.	5.6	130
67	Stimuli-Responsive Polymer–Prodrug Hybrid Nanoplatform for Multistage siRNA Delivery and Combination Cancer Therapy. Nano Letters, 2019, 19, 5967-5974.	4.5	101
68	2D Monoelemental Germanene Quantum Dots: Synthesis as Robust Photothermal Agents for Photonic Cancer Nanomedicine. Angewandte Chemie, 2019, 131, 13539-13544.	1.6	41
69	Multifunctional Fibers to Shape Future Biomedical Devices. Advanced Functional Materials, 2019, 29, 1902834.	7.8	74
70	ROSâ€Responsive Polymeric siRNA Nanomedicine Stabilized by Triple Interactions for the Robust Glioblastoma Combinational RNAi Therapy. Advanced Materials, 2019, 31, e1903277.	11.1	155
71	2D Monoelemental Germanene Quantum Dots: Synthesis as Robust Photothermal Agents for Photonic Cancer Nanomedicine. Angewandte Chemie - International Edition, 2019, 58, 13405-13410.	7.2	102
72	2D Black Mica Nanosheets: Synthesis of Ultrathin Biotite Nanosheets as an Intelligent Theranostic Platform for Combination Cancer Therapy (Adv. Sci. 19/2019). Advanced Science, 2019, 6, 1970118.	5.6	2

#	Article	IF	Citations
73	Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chemical Society Reviews, 2019, 48, 2891-2912.	18.7	482
74	Drug Delivery Strategies for the Treatment of Metabolic Diseases. Advanced Healthcare Materials, 2019, 8, e1801655.	3.9	40
75	Nanobuffering of pH-Responsive Polymers: A Known but Sometimes Overlooked Phenomenon and Its Biological Applications. ACS Nano, 2019, 13, 4876-4882.	7.3	77
76	Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes $\langle i \rangle$ p53 $\langle i \rangle$ -deficient cancers to mTOR inhibition. Science Translational Medicine, 2019, 11, .	5.8	177
77	Comprehensive insights into intracellular fate of WS ₂ nanosheets for enhanced photothermal therapeutic outcomes via exocytosis inhibition. Nanophotonics, 2019, 8, 2331-2346.	2.9	16
78	Editorial: Applications of Nanobiotechnology in Pharmacology. Frontiers in Pharmacology, 2019, 10, 1451.	1.6	15
79	Glutathione-Responsive Prodrug Nanoparticles for Effective Drug Delivery and Cancer Therapy. ACS Nano, 2019, 13, 357-370.	7.3	204
80	Artificial Photosynthesis: Porphyrin/SiO ₂ /Cp*Rh(bpy)Cl Hybrid Nanoparticles Mimicking Chloroplast with Enhanced Electronic Energy Transfer for Biocatalyzed Artificial Photosynthesis (Adv. Funct. Mater. 9/2018). Advanced Functional Materials, 2018, 28, 1870061.	7.8	1
81	Progress and challenges towards targeted delivery of cancer therapeutics. Nature Communications, 2018, 9, 1410.	5.8	1,488
82	Nanotechnology-Based Strategies for siRNA Brain Delivery for Disease Therapy. Trends in Biotechnology, 2018, 36, 562-575.	4.9	139
83	Intracellular Mechanistic Understanding of 2D MoS ₂ Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy. ACS Nano, 2018, 12, 2922-2938.	7.3	188
84	Porphyrin/SiO ₂ /Cp*Rh(bpy)Cl Hybrid Nanoparticles Mimicking Chloroplast with Enhanced Electronic Energy Transfer for Biocatalyzed Artificial Photosynthesis. Advanced Functional Materials, 2018, 28, 1705083.	7.8	45
85	Cancer Theranostics: Twoâ€Dimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics (Adv. Mater. 38/2018). Advanced Materials, 2018, 30, 1870283.	11.1	3
86	Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nature Biomedical Engineering, 2018, 2, 850-864.	11.6	214
87	Redoxâ∈Responsive Nanoparticleâ∈Mediated Systemic RNAi for Effective Cancer Therapy. Small, 2018, 14, e1802565.	5.2	85
88	Cancer Theranostics: A Novel Top-Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imaging-Guided Cancer Therapy (Adv. Mater. 36/2018). Advanced Materials, 2018, 30, 1870268.	11,1	4
89	Advancing the Pharmaceutical Potential of Bioinorganic Hybrid Lipidâ€Based Assemblies. Advanced Science, 2018, 5, 1800564.	5.6	15
90	Twoâ€Dimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics. Advanced Materials, 2018, 30, e1802061.	11.1	314

#	Article	IF	Citations
91	A Novel Topâ€Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imagingâ€Guided Cancer Therapy. Advanced Materials, 2018, 30, e1803031.	11.1	318
92	Polydopamineâ€Modified Black Phosphorous Nanocapsule with Enhanced Stability and Photothermal Performance for Tumor Multimodal Treatments. Advanced Science, 2018, 5, 1800510.	5.6	460
93	Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy. Journal of Materials Chemistry B, 2018, 6, 4747-4755.	2.9	137
94	Glutathione-Scavenging Poly(disulfide amide) Nanoparticles for the Effective Delivery of Pt(IV) Prodrugs and Reversal of Cisplatin Resistance. Nano Letters, 2018, 18, 4618-4625.	4.5	173
95	TiL ₄ â€Coordinated Black Phosphorus Quantum Dots as an Efficient Contrast Agent for In Vivo Photoacoustic Imaging of Cancer. Small, 2017, 13, 1602896.	5.2	251
96	Black Phosphorus: Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics (Adv. Mater. 1/2017). Advanced Materials, 2017, 29, .	11.1	10
97	A Drugâ€Selfâ€Gated Mesoporous Antitumor Nanoplatform Based on pHâ€Sensitive Dynamic Covalent Bond. Advanced Functional Materials, 2017, 27, 1605985.	7.8	255
98	Systematic investigation on the intracellular trafficking network of polymeric nanoparticles. Nanoscale, 2017, 9, 3269-3282.	2.8	62
99	Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy. ACS Nano, 2017, 11, 2618-2627.	7.3	172
100	Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi. Microbial Cell Factories, 2017, 16, 48.	1.9	96
101	Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 11896-11900.	7.2	465
102	Tumor Microenvironment-Responsive Multistaged Nanoplatform for Systemic RNAi and Cancer Therapy. Nano Letters, 2017, 17, 4427-4435.	4.5	119
103	Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy. Angewandte Chemie, 2017, 129, 12058-12062.	1.6	93
104	TPGSâ€Functionalized Polydopamineâ€Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance. Small, 2017, 13, 1700623.	5.2	218
105	DACHPt-Loaded Unimolecular Micelles Based on Hydrophilic Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. ACS Applied Materials & Samp; Interfaces, 2017, 9, 112-119.	4.0	42
106	A Multifunctional Nanoplatform against Multidrug Resistant Cancer: Merging the Best of Targeted Chemo/Gene/Photothermal Therapy. Advanced Functional Materials, 2017, 27, 1704135.	7.8	260
107	Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Novel Strategy for Exocytosis-Inhibiting, Lysosome Impairment-Based Cancer Therapy. Nano Letters, 2017, 17, 6790-6801.	4.5	143
108	ROSâ€Responsive Polyprodrug Nanoparticles for Triggered Drug Delivery and Effective Cancer Therapy. Advanced Materials, 2017, 29, 1700141.	11.1	370

#	Article	IF	CITATIONS
109	Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46, 4218-4244.	18.7	1,709
110	Cancer Therapy: TPGSâ€Functionalized Polydopamineâ€Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance (Small 29/2017). Small, 2017, 13, .	5.2	0
111	Co-delivery of docetaxel and bortezomib based on a targeting nanoplatform for enhancing cancer chemotherapy effects. Drug Delivery, 2017, 24, 1124-1138.	2.5	48
112	Innentitelbild: Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy (Angew. Chem. 39/2017). Angewandte Chemie, 2017, 129, 11816-11816.	1.6	1
113	Cancer Therapy: A Multifunctional Nanoplatform against Multidrug Resistant Cancer: Merging the Best of Targeted Chemo/Gene/Photothermal Therapy (Adv. Funct. Mater. 45/2017). Advanced Functional Materials, 2017, 27, .	7.8	3
114	Challenges in DNA Delivery and Recent Advances in Multifunctional Polymeric DNA Delivery Systems. Biomacromolecules, 2017, 18, 2231-2246.	2.6	147
115	Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics. Advanced Materials, 2017, 29, 1603276.	11.1	721
116	Investigation and intervention of autophagy to guide cancer treatment with nanogels. Nanoscale, 2017, 9, 150-163.	2.8	35
117	Phosphorylcholine-based stealthy nanocapsules enabling tumor microenvironment-responsive doxorubicin release for tumor suppression. Theranostics, 2017, 7, 1192-1203.	4.6	52
118	Emerging Advances in Nanotheranostics with Intelligent Bioresponsive Systems. Theranostics, 2017, 7, 3915-3919.	4.6	48
119	Surface De-PEGylation Controls Nanoparticle-Mediated siRNA Delivery <i>In Vitro</i> and <i>In Vivo</i> Theranostics, 2017, 7, 1990-2002.	4.6	81
120	Intracellular Trafficking Network of Protein Nanocapsules: Endocytosis, Exocytosis and Autophagy. Theranostics, 2016, 6, 2099-2113.	4.6	67
121	Robust aptamer–polydopamine-functionalized M-PLGA–TPGS nanoparticles for targeted delivery of docetaxel and enhanced cervical cancer therapy. International Journal of Nanomedicine, 2016, 11, 2953.	3.3	40
122	Polydopamine-Based Surface Modification of Novel Nanoparticle-Aptamer Bioconjugates for in Vivo li> Breast Cancer Targeting and Enhanced Therapeutic Effects. Theranostics, 2016, 6, 470-484.	4.6	184
123	Polymeric Nanoparticles Amenable to Simultaneous Installation of Exterior Targeting and Interior Therapeutic Proteins. Angewandte Chemie - International Edition, 2016, 55, 3309-3312.	7.2	121
124	Enhanced Oral Delivery of Protein Drugs Using Zwitterion-Functionalized Nanoparticles to Overcome both the Diffusion and Absorption Barriers. ACS Applied Materials & Interfaces, 2016, 8, 25444-25453.	4.0	127
125	Iron Oxide Nanoparticles Induce Autophagosome Accumulation through Multiple Mechanisms: Lysosome Impairment, Mitochondrial Damage, and ER Stress. Molecular Pharmaceutics, 2016, 13, 2578-2587.	2.3	112
126	Polymeric Nanoparticles Amenable to Simultaneous Installation of Exterior Targeting and Interior Therapeutic Proteins. Angewandte Chemie, 2016, 128, 3370-3373.	1.6	10

#	Article	IF	CITATIONS
127	Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. Journal of Colloid and Interface Science, 2016, 463, 279-287.	5. 0	205
128	Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomaterialia, 2016, 30, 144-154.	4.1	243
129	Docetaxel-loaded nanoparticles of dendrimer-like amphiphilic copolymer for cancer therapy. Journal of Controlled Release, 2015, 213, e119.	4.8	8
130	Pharmaceutical Nanotechnology: Blended Nanoparticle System Based on Miscible Structurally Similar Polymers: A Safe, Simple, Targeted, and Surprisingly High Efficiency Vehicle for Cancer Therapy (Adv.) Tj ETQq0 0	0 sg BT /O	ve s lock 10 Tf
131	Docetaxelâ€Loaded Nanoparticles of Dendritic Amphiphilic Block Copolymer H40â€PLAâ€ <i>b</i> â€TPGS for Cancer Treatment. Particle and Particle Systems Characterization, 2015, 32, 112-122.	1.2	54
132	DTX-loaded star-shaped TAPP-PLA-b-TPGS nanoparticles for cancer chemical and photodynamic combination therapy. RSC Advances, 2015, 5, 50617-50627.	1.7	31
133	Long-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7779-7784.	3.3	170
134	Blended Nanoparticle System Based on Miscible Structurally Similar Polymers: A Safe, Simple, Targeted, and Surprisingly High Efficiency Vehicle for Cancer Therapy. Advanced Healthcare Materials, 2015, 4, 1203-1214.	3.9	67
135	Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. Journal of Materials Science: Materials in Medicine, 2015, 26, 165.	1.7	37
136	Novel Simvastatin-Loaded Nanoparticles Based on Cholic Acid-Core Star-Shaped PLGA for Breast Cancer Treatment. Journal of Biomedical Nanotechnology, 2015, 11, 1247-1260.	0.5	39
137	Enhancing Therapeutic Effects of Docetaxel-Loaded Dendritic Copolymer Nanoparticles by Co-Treatment with Autophagy Inhibitor on Breast Cancer. Theranostics, 2014, 4, 1085-1095.	4.6	64
138	The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials, 2014, 35, 1932-1943.	5.7	159
139	Synthesis of cholic acid-core poly(ε-caprolactone-ran-lactide)-b-poly(ethylene glycol) 1000 random copolymer as a chemotherapeutic nanocarrier for liver cancer treatment. Biomaterials Science, 2014, 2, 1262-1274.	2.6	43
140	Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. Acta Biomaterialia, 2013, 9, 8910-8920.	4.1	120
141	Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials, 2013, 34, 6058-6067.	5.7	252
142	Enhanced adsorption of puerarin onto a novel hydrophilic and polar modified post-crosslinked resin from aqueous solution. Journal of Colloid and Interface Science, 2012, 385, 166-173.	5.0	39