
Kazuhiro Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1829698/publications.pdf Version: 2024-02-01

ΚλΖΙΙΗΙΡΟ SATO

#	Article	IF	CITATIONS
1	A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491, 711-716.	27.8	1,416
2	Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 2009, 10, 582.	2.8	570
3	An Aluminum-Activated Citrate Transporter in Barley. Plant and Cell Physiology, 2007, 48, 1081-1091.	3.1	475
4	Unlocking the Barley Genome by Chromosomal and Comparative Genomics Â. Plant Cell, 2011, 23, 1249-1263.	6.6	448
5	The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588, 284-289.	27.8	314
6	Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4062-4067.	7.1	296
7	Evolution of the Grain Dispersal System in Barley. Cell, 2015, 162, 527-539.	28.9	265
8	Comprehensive Sequence Analysis of 24,783 Barley Full-Length cDNAs Derived from 12 Clone Libraries Â. Plant Physiology, 2011, 156, 20-28.	4.8	201
9	The International Barley Sequencing Consortium—At the Threshold of Efficient Access to the Barley Genome Â. Plant Physiology, 2009, 149, 142-147.	4.8	195
10	The HvNramp5 Transporter Mediates Uptake of Cadmium and Manganese, But Not Iron. Plant Physiology, 2016, 172, 1899-1910.	4.8	183
11	Direct links between the vernalization response and other key traits of cereal crops. Nature Communications, 2015, 6, 5882.	12.8	177
12	Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theoretical and Applied Genetics, 2001, 103, 415-424.	3.6	161
13	Acquisition of aluminium tolerance by modification of a single gene in barley. Nature Communications, 2012, 3, 713.	12.8	155
14	An Improved Consensus Linkage Map of Barley Based on Flow-Sorted Chromosomes and Single Nucleotide Polymorphism Markers. Plant Genome, 2011, 4, 238-249.	2.8	150
15	An atlas of gene expression from seed to seed through barley development. Functional and Integrative Genomics, 2006, 6, 202-211.	3.5	138
16	QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theoretical and Applied Genetics, 2000, 101, 173-184.	3.6	131
17	QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theoretical and Applied Genetics, 2001, 103, 625-637.	3.6	124
18	A high-density transcript linkage map of barley derived from a single population. Heredity, 2009, 103, 110-117.	2.6	119

#	Article	IF	CITATIONS
19	Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Genome, 2003, 46, 1010-1023.	2.0	112
20	Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta, 2003, 217, 794-800.	3.2	109
21	Genome-Edited Triple-Recessive Mutation Alters Seed Dormancy in Wheat. Cell Reports, 2019, 28, 1362-1369.e4.	6.4	102
22	Alanine aminotransferase controls seed dormancy in barley. Nature Communications, 2016, 7, 11625.	12.8	101
23	Development of 5006 Full-Length CDNAs in Barley: A Tool for Accessing Cereal Genomics Resources. DNA Research, 2009, 16, 81-89.	3.4	99
24	Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature, 2020, 584, 109-114.	27.8	98
25	Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. Journal of Experimental Botany, 2004, 55, 1335-1341.	4.8	94
26	Genomeâ€wide association mapping of cadmium accumulation in different organs of barley. New Phytologist, 2015, 208, 817-829.	7.3	93
27	A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. Journal of Experimental Botany, 2012, 63, 5223-5232.	4.8	86
28	Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley. Current Biology, 2016, 26, 775-781.	3.9	85
29	Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2002, 105, 458-464.	3.6	82
30	Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theoretical and Applied Genetics, 2003, 107, 806-813.	3.6	81
31	Genotypic variation in silicon concentration of barley grain. Plant and Soil, 2003, 249, 383-387.	3.7	76
32	Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar †Fielder'. DNA Research, 2021, 28, .	3.4	74
33	Construction of a novel beer proteome map and its use in beer quality control. Food Chemistry, 2010, 118, 566-574.	8.2	70
34	The domestication of cultivated barley. Developments in Plant Genetics and Breeding, 2003, , 9-27.	0.6	64
35	Chromosomal assignment and deletion mapping of barley EST markers. Genes and Genetic Systems, 2005, 80, 357-366.	0.7	64
36	Detection of seed dormancy QTL in multiple mapping populations derived from crosses involving novel barley germplasm. Theoretical and Applied Genetics, 2007, 115, 869-876.	3.6	62

#	Article	IF	CITATIONS
37	Identification of novel haze-active beer proteins by proteome analysis. Journal of Cereal Science, 2009, 49, 141-147.	3.7	58
38	Origin of wheat B-genome chromosomes inferred from RNA sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops. DNA Research, 2019, 26, 171-182.	3.4	58
39	A wheat homologue of <i>PHYTOCLOCK 1</i> is a candidate gene conferring the early heading phenotype to einkorn wheat. Genes and Genetic Systems, 2012, 87, 357-367.	0.7	55
40	Novel Prediction Method of Beer Foam Stability Using Protein Z, Barley Dimeric α-Amylase Inhibitor-1 (BDAI-1) and Yeast Thioredoxin. Journal of Agricultural and Food Chemistry, 2008, 56, 8664-8671.	5.2	54
41	An application of high-throughput SNP genotyping for barley genome mapping and characterization of recombinant chromosome substitution lines. Theoretical and Applied Genetics, 2009, 119, 613-619.	3.6	53
42	Genetic diversity for quantitatively inherited agronomic and malting quality traits. Developments in Plant Genetics and Breeding, 2003, 7, 201-226.	0.6	51
43	Natural Variation of Barley Vernalization Requirements: Implication of Quantitative Variation of Winter Growth Habit as an Adaptive Trait in East Asia. Plant and Cell Physiology, 2011, 52, 775-784.	3.1	49
44	Methylobacterium Species Promoting Rice and Barley Growth and Interaction Specificity Revealed with Whole-Cell Matrix-Assisted Laser Desorption / Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF/MS) Analysis. PLoS ONE, 2015, 10, e0129509.	2.5	48
45	The Influence of Barley Malt Protein Modification on Beer Foam Stability and Their Relationship to the Barley Dimeric α-Amylase Inhibitor-I (BDAI-I) as a Possible Foam-Promoting Protein. Journal of Agricultural and Food Chemistry, 2008, 56, 1458-1464.	5.2	47
46	QTL analysis of Fusarium head blight resistance using a high-density linkage map in barley. Theoretical and Applied Genetics, 2005, 111, 1661-1672.	3.6	46
47	Dissection of barley chromosome 3H in common wheat and a comparison of 3H physical and genetic maps. Genes and Genetic Systems, 2009, 84, 25-34.	0.7	45
48	NBRP databases: databases of biological resources in Japan. Nucleic Acids Research, 2010, 38, D26-D32.	14.5	44
49	Breeding for low cadmium barley by introgression of a Sukkula-like transposable element. Nature Food, 2020, 1, 489-499.	14.0	44
50	Dissection of barley chromosome 5H in common wheat. Genes and Genetic Systems, 2007, 82, 123-133.	0.7	43
51	Genome-wide marker development for the wheat D genome based on single nucleotide polymorphisms identified from transcripts in the wild wheat progenitor Aegilops tauschii. Theoretical and Applied Genetics, 2014, 127, 261-271.	3.6	43
52	Detection of QTLs for salt tolerance in Asian barley (Hordeum vulgare L.) by association analysis with SNP markers. Breeding Science, 2014, 64, 378-388.	1.9	41
53	Mitochondrial genome sequences from wild and cultivated barley (Hordeum vulgare). BMC Genomics, 2016, 17, 824.	2.8	41
54	Construction and Characterization of a Bacterial Artificial Chromosome (BAC) Library from the Japanese Malting Barley variety 'Haruna Nijo'. Breeding Science, 2007, 57, 29-38.	1.9	40

#	Article	IF	CITATIONS
55	QTL Analysis in Recombinant Chromosome Substitution Lines and Doubled Haploid Lines Derived from a Cross between Hordeum vulgare ssp. vulgare and Hordeum vulgare ssp. spontaneum. Molecular Breeding, 2005, 16, 295-311.	2.1	39
56	Proteome analysis of the wort boiling process. Food Research International, 2012, 45, 262-271.	6.2	39
57	<i>Agrobacterium tumefaciens</i> Enhances Biosynthesis of Two Distinct Auxins in the Formation of Crown Galls. Plant and Cell Physiology, 2019, 60, 29-37.	3.1	39
58	Mapping resistance to cereal aphids in barley. Theoretical and Applied Genetics, 1997, 94, 592-596.	3.6	38
59	Analysis of Intraspecies Diversity in Wheat and Barley Genomes Identifies Breakpoints of Ancient Haplotypes and Provides Insight into the Structure of Diploid and Hexaploid Triticeae Gene Pools Â. Plant Physiology, 2009, 149, 258-270.	4.8	38
60	Purification of barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) from beer and their impact on beer foam stability. Food Chemistry, 2015, 172, 257-264.	8.2	38
61	Mapping nonrecombining regions in barley using multicolor FISH. Chromosome Research, 2013, 21, 739-751.	2.2	37
62	Endogenous hormone levels affect the regeneration ability of callus derived from different organs in barley. Plant Physiology and Biochemistry, 2016, 99, 66-72.	5.8	36
63	Isolation and Characterization of a Barley Yellow Stripe-Like Gene, HvYSL5. Plant and Cell Physiology, 2011, 52, 765-774.	3.1	35
64	Beer proteomics analysis for beer quality control and malting barley breeding. Food Research International, 2013, 54, 1013-1020.	6.2	34
65	Genomic regions responsible for amenability to Agrobacterium-mediated transformation in barley. Scientific Reports, 2016, 6, 37505.	3.3	34
66	Single Nucleotide Polymorphism Mapping and Alignment of Recombinant Chromosome Substitution Lines in Barley. Plant and Cell Physiology, 2011, 52, 728-737.	3.1	32
67	Improvement of barley genome annotations by deciphering the Haruna Nijo genome. DNA Research, 2016, 23, dsv033.	3.4	32
68	Exome QTL-seq maps monogenic locus and QTLs in barley. BMC Genomics, 2017, 18, 125.	2.8	32
69	Mapping genes for deep-seeding tolerance in barley. Euphytica, 2001, 122, 37-43.	1.2	31
70	RMo1 Confers Blast Resistance in Barley and Is Located within the Complex of Resistance Genes Containing Mla, a Powdery Mildew Resistance Gene. Molecular Plant-Microbe Interactions, 2006, 19, 1034-1041.	2.6	31
71	Barley EST Markers Enhance Map Saturation and QTL Mapping in Diploid Wheat. Breeding Science, 2007, 57, 39-45.	1.9	30
72	Discovery of High-Confidence Single Nucleotide Polymorphisms from Large-Scale De Novo Analysis of Leaf Transcripts of Aegilops tauschii, A Wild Wheat Progenitor. DNA Research, 2012, 19, 487-497.	3.4	29

#	Article	IF	CITATIONS
73	History and future perspectives of barley genomics. DNA Research, 2020, 27, .	3.4	29
74	Extended Application of Barley EST Markers for the Analysis of Alien Chromosomes Added to Wheat Genetic Background. Breeding Science, 2005, 55, 335-341.	1.9	29
75	Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences. Genes and Genetic Systems, 2005, 80, 147-159.	0.7	28
76	QTL analysis of resistance to the rice blast pathogen in barley (Hordeum vulgare). Theoretical and Applied Genetics, 2001, 102, 916-920.	3.6	27
77	Mapping multiple disease resistance genes using a barley mapping population evaluated in Peru, Mexico, and the USA. Molecular Breeding, 2006, 18, 355-366.	2.1	27
78	Detection of Fusarium head blight resistance QTLs using five populations of top-cross progeny derived from two-rowÂ×Âtwo-row crosses in barley. Molecular Breeding, 2008, 22, 517-526.	2.1	27
79	The Relationships between Development and Low Temperature Tolerance in Barley Near Isogenic Lines Differing for Flowering Behavior. Plant and Cell Physiology, 2015, 56, 2312-2324.	3.1	27
80	RNA-seq analysis reveals considerable genetic diversity and provides genetic markers saturating all chromosomes in the diploid wild wheat relative Aegilops umbellulata. BMC Plant Biology, 2018, 18, 271.	3.6	27
81	Retrotransposon Insertion and DNA Methylation Regulate Aluminum Tolerance in European Barley Accessions. Plant Physiology, 2018, 178, 716-727.	4.8	27
82	Genetic analysis of seed dormancy QTL in barley. Breeding Science, 2009, 59, 645-650.	1.9	27
83	Genome-wide identification of novel genetic markers from RNA sequencing assembly of diverse Aegilops tauschii accessions. Molecular Genetics and Genomics, 2016, 291, 1681-1694.	2.1	26
84	Nicotinamide mononucleotide and related metabolites induce disease resistance against fungal phytopathogens in Arabidopsis and barley. Scientific Reports, 2017, 7, 6389.	3.3	26
85	Mapping Genes for Callus Growth and Shoot Regeneration in Barley(Hordeum vulgare L.) Breeding Science, 1996, 46, 137-142.	0.2	25
86	Net blotch resistance in wild species of Hordeum. Euphytica, 1997, 95, 179-185.	1.2	25
87	Ecogeographical diversity – a Vavilovian approach. Developments in Plant Genetics and Breeding, 2003, 7, 53-76.	0.6	25
88	Genetic Variation in Component Traits of Heading Date in Hordeum vulgare subsp. spontaneum Accessions Characterized in Controlled Environments. Crop Science, 2004, 44, 1622-1632.	1.8	25
89	Genotypic variation in Fe concentration of barley grain. Soil Science and Plant Nutrition, 2004, 50, 1115-1117.	1.9	25
90	QTL Analysis of Fusarium Head Blight Severity in Recombinant Inbred Population Derived from a Cross between Two-rowed Barley Varieties. Breeding Science, 2006, 56, 25-30.	1.9	25

#	Article	IF	CITATIONS
91	In planta Genome Editing in Commercial Wheat Varieties. Frontiers in Plant Science, 2021, 12, 648841.	3.6	25
92	Selection of transformation-efficient barley genotypes based on TFA (transformation amenability) haplotype and higher resolution mapping of the TFA loci. Plant Cell Reports, 2017, 36, 611-620.	5.6	24
93	Indigenous knowledge and traditional conservation of hulless barley (Hordeum vulgare) germplasm resources in the Tibetan communities of Shangri-la, Yunnan, SW China. Genetic Resources and Crop Evolution, 2011, 58, 645-655.	1.6	22
94	A single nucleotide polymorphism in the "Fra―gene results in fractured starch granules in barley. Theoretical and Applied Genetics, 2018, 131, 353-364.	3.6	22
95	Development of DNA markers associated with beer foam stability for barley breeding. Theoretical and Applied Genetics, 2011, 122, 199-210.	3.6	21
96	Development of Genome-Wide SNP Markers for Barley via Reference- Based RNA-Seq Analysis. Frontiers in Plant Science, 2019, 10, 577.	3.6	21
97	Mutation Analysis of Barley Malt Protein Z4 and Protein Z7 on Beer Foam Stability. Journal of Agricultural and Food Chemistry, 2012, 60, 1548-1554.	5.2	20
98	Perspectives on Low Temperature Tolerance and Vernalization Sensitivity in Barley: Prospects for Facultative Growth Habit. Frontiers in Plant Science, 2020, 11, 585927.	3.6	19
99	A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B. BMC Genomics, 2015, 16, 595.	2.8	18
100	Sequence differences in the seed dormancy gene Qsd1 among various wheat genomes. BMC Genomics, 2017, 18, 497.	2.8	16
101	Quantitative Trait Loci and Maternal Effects Affecting the Strong Grain Dormancy of Wild Barley (Hordeum vulgare ssp. spontaneum). Frontiers in Plant Science, 2017, 8, 1840.	3.6	16
102	East Asian origin of the widespread alpine snowâ€bed herb, <i>Primula cuneifolia</i> (Primulaceae), in the northern Pacific region. Journal of Biogeography, 2020, 47, 2181-2193.	3.0	16
103	Mapping of the eibi1 gene responsible for the drought hypersensitive cuticle in wild barley (Hordeum) Tj ETQq1	1 0,78431 1.9	4 rgBT /Ove
104	Malting quality quantitative trait loci on a high-density map of Mikamo goldenÂ×ÂHarrington cross in barley (Hordeum vulgare L.). Molecular Breeding, 2012, 30, 103-112.	2.1	15
105	454 sequencing of pooled BAC clones on chromosome 3H of barley. BMC Genomics, 2011, 12, 246.	2.8	14
106	Differences in dry matter production, grain production, and photosynthetic rate in barley cultivars under long-term salinity. Plant Production Science, 2017, 20, 288-299.	2.0	14
107	QTLs maintaining grain fertility under salt stress detected by exome QTL-seq and interval mapping in barley. Breeding Science, 2018, 68, 561-570.	1.9	14
108	Marker-trait associations in two-rowed spring barley accessions from Kazakhstan and the USA. PLoS ONE, 2018, 13, e0205421.	2.5	14

#	Article	IF	CITATIONS
109	Expression of barley <i>Glutathione S-Transferase13</i> gene reduces accumulation of reactive oxygen species by trichothecenes and paraquat in Arabidopsis plants. Plant Biotechnology, 2018, 35, 71-79.	1.0	14
110	Chromosome-scale assembly of wild barley accession "OUH602― G3: Genes, Genomes, Genetics, 2021, 11,	1.8	14
111	Effects of Leaf Color, Epicuticular Wax Amount and Gramine Content in Barley Hybrids on Cereal Aphid Populations. Applied Entomology and Zoology, 1997, 32, 1-8.	1.2	14
112	Barley diversity – an introduction. Developments in Plant Genetics and Breeding, 2003, 7, 3-8.	0.6	13
113	Diversity in resistance to biotic stresses. Developments in Plant Genetics and Breeding, 2003, , 143-178.	0.6	13
114	Regulation of germination by targeted mutagenesis of grain dormancy genes in barley. Plant Biotechnology Journal, 2022, 20, 37-46.	8.3	13
115	Novel barley (Hordeum vulgare L.) germplasm resistant to acidic soil. Crop and Pasture Science, 2010, 61, 540.	1.5	12
116	Genome-wide polymorphisms from RNA sequencing assembly of leaf transcripts facilitate phylogenetic analysis and molecular marker development in wild einkorn wheat. Molecular Genetics and Genomics, 2019, 294, 1327-1341.	2.1	12
117	Mapping of Quantitative Trait Loci Conferring Resistance to Barley Yellow Mosaic Virus in a Chinese Barley Landrace Mokusekko 3 Breeding Science, 2001, 51, 171-177.	1.9	11
118	QTLs in barley controlling seedling elongation of deep-sown seeds. Euphytica, 2008, 164, 761-768.	1.2	11
119	Expression and functional analysis of the barley Nud gene using transgenic rice. Breeding Science, 2011, 61, 35-42.	1.9	11
120	RNA Sequencing-Based Bulked Segregant Analysis Facilitates Efficient D-genome Marker Development for a Specific Chromosomal Region of Synthetic Hexaploid Wheat. International Journal of Molecular Sciences, 2018, 19, 3749.	4.1	11
121	Genomic distribution of MITEs in barley determined by MITE-AFLP mapping. Genome, 2006, 49, 1616-1620.	2.0	10
122	Genomic characterization of the Hordeum vulgare DEP1 (HvDEP1) gene and its diversity in a collection of barley accessions. Euphytica, 2014, 198, 29-41.	1.2	10
123	Population Structure and Genetic Diversity of Two-Rowed Barley Accessions from Kazakhstan Based on SNP Genotyping Data. Plants, 2021, 10, 2025.	3.5	10
124	Genetic characterization of wild barley populations (Hordeum vulgare ssp. spontaneum) from Kazakhstan based on genome wide SNP analysis. Breeding Science, 2014, 64, 399-403.	1.9	9
125	Introgression of chromosomal segments conferring early heading date from wheat diploid progenitor, Aegilops tauschii Coss., into Japanese elite wheat cultivars. PLoS ONE, 2020, 15, e0228397.	2.5	9
126	Effect of the Dwarfing Gene From Dee-geo-woo-gen on Culm and Internode Lengths, and its Response to Fertilizer in Rice Breeding Science, 1995, 45, 7-14.	0.2	9

#	Article	IF	CITATIONS
127	A Root-specificO-Methyltransferase Gene Expressed in Salt-tolerant Barley. Bioscience, Biotechnology and Biochemistry, 2003, 67, 966-972.	1.3	8
128	Validation of rice blast resistance genes in barley using a QTL mapping population and near-isolines. Breeding Science, 2009, 59, 341-349.	1.9	8
129	Transcriptome analysis of barley identifies heat shock and HD-Zip I transcription factors up-regulated in response to multiple abiotic stresses. Molecular Breeding, 2014, 34, 761-768.	2.1	8
130	Inheritance of gramine content in barley. Euphytica, 1999, 106, 181-185.	1.2	7
131	NBRP, National Bioresource Project of Japan and plant bioresource management. Breeding Science, 2010, 60, 461-468.	1.9	7
132	Accession difference in leaf photosynthesis, root hydraulic conductance and gene expression of root aquaporins under salt stress in barley seedlings. Plant Production Science, 2021, 24, 73-82.	2.0	7
133	Mapping of QTL for intermedium spike on barley chromosome 4H using EST-based markers. Breeding Science, 2009, 59, 383-390.	1.9	7
134	A crucial role for a nodeâ€localized transporter, HvSPDT, in loading phosphorus into barley grains. New Phytologist, 2022, 234, 1249-1261.	7.3	7
135	Genetic diversity analysis of hulless barley from Shangri-la region revealed by SSR and AFLP markers. Genetic Resources and Crop Evolution, 2012, 59, 1543-1552.	1.6	6
136	Detection of QTLs controlling alpha-amylase activity in a diversity panel of 343 barley accessions. Molecular Breeding, 2018, 38, 1.	2.1	6
137	Diploid genome differentiation conferred by RNA sequencing-based survey of genome-wide polymorphisms throughout homoeologous loci in Triticum and Aegilops. BMC Genomics, 2020, 21, 246.	2.8	6
138	Chromosome-scale assembly of barley cv. â€~Haruna Nijo' as a resource for barley genetics. DNA Research, 2022, 29, .	3.4	6
139	Protocol for Genome Editing to Produce Multiple Mutants in Wheat. STAR Protocols, 2020, 1, 100053.	1.2	5
140	Identification of a Locus Conferring Dominant Susceptibility to Pyrenophora tritici-repentis in Barley. Frontiers in Plant Science, 2020, 11, 158.	3.6	5
141	RACE1, a Japanese Blumeria graminis f. sp. hordei isolate, is capable of overcoming partially mlo-mediated penetration resistance in barley in an allele-specific manner. PLoS ONE, 2021, 16, e0256574.	2.5	5
142	RNA-Seq-based DNA marker analysis of the genetics and molecular evolution of Triticeae species. Functional and Integrative Genomics, 2021, 21, 535-542.	3.5	4
143	Germplasm evaluation for crop improvement: Analysis of grain quality and cadmium accumulation in barley. Journal of Cereal Science, 2021, 101, 103297.	3.7	4
144	Barley diversity – an outlook. Developments in Plant Genetics and Breeding, 2003, , 269-278.	0.6	3

#	Article	IF	CITATIONS
145	Genetic Factors Associated with Heading Responses Revealed by Field Evaluation of 274 Barley Accessions for 20 Seasons. IScience, 2020, 23, 101146.	4.1	3
146	Beer and Wort Proteomics. Methods in Molecular Biology, 2014, 1072, 737-754.	0.9	3
147	Genetic analysis of the resistance of barley to cryptic species of Pyricularia. Journal of General Plant Pathology, 2016, 82, 302-306.	1.0	2
148	Genomics Approaches to Mining Barley Germplasm Collections. Compendium of Plant Genomes, 2018, , 155-169.	0.5	2
149	Genetic Characterization of Genetic Resources of <i>Aegilops tauschii</i> , Wheat D Genome Donor, Newly Collected in North Caucasia. American Journal of Plant Sciences, 2017, 08, 2769-2784.	0.8	2
150	Whole Exome-Sequencing of Pooled Genomic DNA Samples to Detect Quantitative Trait Loci in Esotropia and Exotropia of Strabismus in Japanese. Life, 2022, 12, 41.	2.4	2
151	Detection of splicing variants in the leaf and spike transcripts of wild diploid wheat Aegilops tauschii and transmission of the splicing patterns to synthetic hexaploid wheat. Plant Gene, 2017, 9, 6-12.	2.3	1
152	Editorial: Use of Barley and Wheat Reference Sequences: Downstream Applications in Breeding, Gene Isolation, GWAS, and Evolution. Frontiers in Plant Science, 2020, 11, 1017.	3.6	1
153	Cereal Resources in National BioResource Project of Japan. Interdisciplinary Bio Central, 2010, 2, 13.1-13.8.	0.1	0
154	Development of Recombinant Chromosome Substitution Lines for Aluminum Tolerance in Barley. , 2013, , 339-347.		0
155	Analysis of barley genome diversity and its application to breeding. Ikushugaku Kenkyu, 2013, 15, 167-172.	0.3	0
156	Diallel analysis of husk content in malting barley Breeding Science, 1989, 39, 471-480.	0.2	0