Greg S Corrado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1829007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A guide to deep learning in healthcare. Nature Medicine, 2019, 25, 24-29.	30.7	1,906
2	International evaluation of an AI system for breast cancer screening. Nature, 2020, 577, 89-94.	27.8	1,458
3	End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 2019, 25, 954-961.	30.7	1,122
4	Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering, 2018, 2, 158-164.	22.5	1,114
5	Matching Behavior and the Representation of Value in the Parietal Cortex. Science, 2004, 304, 1782-1787.	12.6	952
6	Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience, 2010, 13, 369-378.	14.8	907
7	Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. Transactions of the Association for Computational Linguistics, 2017, 5, 339-351.	4.8	678
8	Choosing the greater of two goods: neural currencies for valuation and decision making. Nature Reviews Neuroscience, 2005, 6, 363-375.	10.2	511
9	Ensuring Fairness in Machine Learning to Advance Health Equity. Annals of Internal Medicine, 2018, 169, 866.	3.9	441
10	A deep learning system for differential diagnosis of skin diseases. Nature Medicine, 2020, 26, 900-908.	30.7	356
11	Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. Ophthalmology, 2018, 125, 1264-1272.	5.2	347
12	LINEAR-NONLINEAR-POISSON MODELS OF PRIMATE CHOICE DYNAMICS. Journal of the Experimental Analysis of Behavior, 2005, 84, 581-617.	1.1	188
13	An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nature Medicine, 2019, 25, 1453-1457.	30.7	179
14	Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated Reference Standards and Population-adjusted Evaluation. Radiology, 2020, 294, 421-431.	7.3	167
15	Detection of anaemia from retinal fundus images via deep learning. Nature Biomedical Engineering, 2020, 4, 18-27.	22.5	130
16	Predicting the risk of developing diabetic retinopathy using deep learning. The Lancet Digital Health, 2021, 3, e10-e19.	12.3	127
17	Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens. JAMA Oncology, 2020, 6, 1372.	7.1	119
18	Understanding Neural Coding through the Model-Based Analysis of Decision Making: Figure 1 Journal of Neuroscience, 2007, 27, 8178-8180.	3.6	81

GREG S CORRADO

#	Article	IF	CITATIONS
19	Development and Assessment of an Artificial Intelligence–Based Tool for Skin Condition Diagnosis by Primary Care Physicians and Nurse Practitioners in Teledermatology Practices. JAMA Network Open, 2021, 4, e217249.	5.9	61
20	Evaluation of the Use of Combined Artificial Intelligence and Pathologist Assessment to Review and Grade Prostate Biopsies. JAMA Network Open, 2020, 3, e2023267.	5.9	56
21	Detecting Deficient Coverage in Colonoscopies. IEEE Transactions on Medical Imaging, 2020, 39, 3451-3462.	8.9	45
22	Early social distancing policies in Europe, changes in mobility & COVID-19 case trajectories: Insights from Spring 2020. PLoS ONE, 2021, 16, e0253071.	2.5	38
23	Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19. Scientific Reports, 2021, 11, 15523.	3.3	22
24	Detection of elusive polyps using a large-scale artificial intelligence system (with videos). Gastrointestinal Endoscopy, 2021, 94, 1099-1109.e10.	1.0	21
25	Remote Tool-Based Adjudication for Grading Diabetic Retinopathy. Translational Vision Science and Technology, 2019, 8, 40.	2.2	17
26	Reply to: Transparency and reproducibility in artificial intelligence. Nature, 2020, 586, E17-E18.	27.8	13
27	Three Controversial Hypotheses Concerning Computation in the Primate Cortex. Proceedings of the AAAI Conference on Artificial Intelligence, 2012, 26, 1543-1549.	4.9	0