
Ji Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1828949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unbiased proteomic analysis detects painful systemic inflammatory profile in the serum of nerve-injured mice. Pain, 2023, 164, e77-e90.	4.2	6
2	Serum Soluble ST2 Is a Valuable Prognostic Biomarker in Patients With Acute Heart Failure. Frontiers in Cardiovascular Medicine, 2022, 9, 812654.	2.4	10
3	Microglia-mediated degradation of perineuronal nets promotes pain. Science, 2022, 377, 80-86.	12.6	52
4	Potentiation of morphine antinociception and inhibition of diabetic neuropathic pain by the multi-chemokine receptor antagonist peptide RAP-103. Life Sciences, 2022, 306, 120788.	4.3	6
5	Inhibition of TLR4 signaling protects mice from sensory and motor dysfunction in an animal model of autoimmune peripheral neuropathy. Journal of Neuroinflammation, 2021, 18, 77.	7.2	8
6	Asparagine: A Metabolite to Be Targeted in Cancers. Metabolites, 2021, 11, 402.	2.9	47
7	CX3CR1 But Not CCR2 Expression Is Required for the Development of Autoimmune Peripheral Neuropathy in Mice. Frontiers in Immunology, 2021, 12, 720733.	4.8	0
8	Does Low Grade Systemic Inflammation Have a Role in Chronic Pain?. Frontiers in Molecular Neuroscience, 2021, 14, 785214.	2.9	18
9	High-salt diet decreases mechanical thresholds in mice that is mediated by a CCR2-dependent mechanism. Journal of Neuroinflammation, 2020, 17, 179.	7.2	9
10	The geriatric pain experience in mice: intact cutaneous thresholds but altered responses to tonic and chronic pain. Neurobiology of Aging, 2020, 89, 1-11.	3.1	16
11	Salt Sensing by Serum/Glucocorticoid-Regulated Kinase 1 Promotes Th17-like Inflammatory Adaptation of Foxp3+ Regulatory T Cells. Cell Reports, 2020, 30, 1515-1529.e4.	6.4	33
12	Murine cytomegalovirus infection in mice results in an acute inflammatory reaction in peripheral nerves. Journal of Neuroimmunology, 2019, 335, 577017.	2.3	4
13	Effector/memory CD8 + T cells synergize with co-stimulation competent macrophages to trigger autoimmune peripheral neuropathy. Brain, Behavior, and Immunity, 2018, 71, 142-157.	4.1	15
14	Sustained and repeated mouth opening leads to development of painful temporomandibular disorders involving macrophage/microglia activation in mice. Pain, 2018, 159, 1277-1288.	4.2	30
15	Targeting macrophage and microglia activation with colony stimulating factor 1 receptor inhibitor is an effective strategy to treat injury-triggered neuropathic pain. Molecular Pain, 2018, 14, 174480691876497.	2.1	95
16	Spinal microglia are required for long-term maintenance of neuropathic pain. Pain, 2017, 158, 1792-1801.	4.2	83
17	Oligodendrogliopathy in Multiple Sclerosis: Low Glycolytic Metabolic Rate Promotes Oligodendrocyte Survival. Journal of Neuroscience, 2016, 36, 4698-4707.	3.6	89
18	Dynamics of spinal microglia repopulation following an acute depletion. Scientific Reports, 2016, 6, 22839.	3.3	40

JI ZHANG

#	Article	lF	CITATIONS
19	Mitochondrial and Bioenergetic Dysfunction in Trauma-Induced Painful Peripheral Neuropathy. Molecular Pain, 2015, 11, s12990-015-0057.	2.1	42
20	Characteristics of spinal microglia in aged and obese mice: potential contributions to impaired sensory behavior. Immunity and Ageing, 2015, 12, 22.	4.2	16
21	Evidence from Human and Animal Studies: Pathological Roles of CD8+ T Cells in Autoimmune Peripheral Neuropathies. Frontiers in Immunology, 2015, 6, 532.	4.8	27
22	Role of IL-10 in Resolution of Inflammation and Functional Recovery after Peripheral Nerve Injury. Journal of Neuroscience, 2015, 35, 16431-16442.	3.6	108
23	Peripheral Nerve Injury Induces Persistent Vascular Dysfunction and Endoneurial Hypoxia, Contributing to the Genesis of Neuropathic Pain. Journal of Neuroscience, 2015, 35, 3346-3359.	3.6	101
24	Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nature Neuroscience, 2015, 18, 1081-1083.	14.8	1,041
25	Correlation of serum alanine aminotransferase and aspartate aminotransferase with coronary heart disease. International Journal of Clinical and Experimental Medicine, 2015, 8, 4399-404.	1.3	10
26	A new animal model of spontaneous autoimmune peripheral polyneuropathy: implications for Guillain-Barré syndrome. Acta Neuropathologica Communications, 2014, 2, 5.	5.2	28
27	Blood-nerve barrier dysfunction contributes to the generation of neuropathic pain and allows targeting of injured nerves for pain relief. Pain, 2014, 155, 954-967.	4.2	70
28	Can Modulating Inflammatory Response be a Good Strategy to Treat Neuropathic Pain?. Current Pharmaceutical Design, 2014, 21, 831-839.	1.9	33
29	Selectively reducing cytokine/chemokine expressing macrophages in injured nerves impairs the development of neuropathic pain. Experimental Neurology, 2013, 240, 205-218.	4.1	41
30	Heterogeneity of macrophages in injured trigeminal nerves: Cytokine/chemokine expressing vs. phagocytic macrophages. Brain, Behavior, and Immunity, 2012, 26, 891-903.	4.1	42
31	Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation. Pain, 2012, 153, 95-106.	4.2	60
32	Statins alleviate experimental nerve injury-induced neuropathic pain. Pain, 2011, 152, 1033-1043.	4.2	60
33	The role of TLR2 in nerve injuryâ€induced neuropathic pain is essentially mediated through macrophages in peripheral inflammatory response. Glia, 2011, 59, 231-241.	4.9	55
34	Peripheral Nerve Injury Alters Blood-Spinal Cord Barrier Functional and Molecular Integrity through a Selective Inflammatory Pathway. Journal of Neuroscience, 2011, 31, 10819-10828.	3.6	211
35	Functional Recovery after Peripheral Nerve Injury is Dependent on the Pro-Inflammatory Cytokines IL-1Î ² and TNF: Implications for Neuropathic Pain. Journal of Neuroscience, 2011, 31, 12533-12542.	3.6	276
36	Distinctive Response of CNS Glial Cells in Orofacial Pain Associated with Injury, Infection and Inflammation. Molecular Pain, 2010, 6, 1744-8069-6-79.	2.1	53

JI ZHANG

#	Article	IF	CITATIONS
37	Connecting Biological Themes Using a Single Human Network of Gene Associations. , 2009, , .		0
38	Transforming Growth Factor-β1 Impairs Neuropathic Pain through Pleiotropic Effects. Molecular Pain, 2009, 5, 1744-8069-5-16.	2.1	118
39	A Functional Analysis of EP4 Receptor-Expressing Neurons in Mediating the Action of Prostaglandin E2 Within Specific Nuclei of the Brain in Response to Circulating Interleukin-1β. Journal of Neurochemistry, 2008, 74, 2134-2145.	3.9	65
40	Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. Journal of Neurochemistry, 2008, 76, 855-864.	3.9	87
41	Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain. Pain, 2008, 135, 37-47.	4.2	181
42	Chemokine Action in the Nervous System. Journal of Neuroscience, 2008, 28, 11792-11795.	3.6	120
43	Expression of CCR2 in Both Resident and Bone Marrow-Derived Microglia Plays a Critical Role in Neuropathic Pain. Journal of Neuroscience, 2007, 27, 12396-12406.	3.6	381
44	Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. Journal of Neurochemistry, 2006, 97, 772-783.	3.9	304
45	Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. European Journal of Neuroscience, 2003, 17, 2750-2754.	2.6	366
46	Is Survival Possible Without Arachidonate Metabolites in the Brain During Systemic Infection?. Physiology, 2003, 18, 137-142.	3.1	11
47	How the Blood Talks to the Brain Parenchyma and the Paraventricular Nucleus of the Hypothalamus During Systemic Inflammatory and Infectious Stimuli. Proceedings of the Society for Experimental Biology and Medicine, 2000, 223, 22-38.	1.8	22
48	Distribution, regulation and colocalization of the genes encoding the EP ₂ ―and EP ₄ â€PGE ₂ receptors in the rat brain and neuronal responses to systemic inflammation. European Journal of Neuroscience, 1999, 11, 2651-2668.	2.6	196
49	Arachidonate Metabolites in the Neurophysiological System: The Fever Pathway. , 0, , 463-472.		0
50	The Impact of High Salt Diet on the Nociceptive Pain Thresholds and Functional Phenotype of Myeloid Cells. Canadian Journal of Pain, 0, , .	1.7	0