
Alexander V Uskov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1828668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Design of Two-Dimensional Array of Laser Diodes With Direct Convective Cooling. IEEE Journal of Quantum Electronics, 2022, 58, 1-8.	1.9	Ο
2	Landau Damping in Hybrid Plasmonics. Journal of Physical Chemistry Letters, 2022, 13, 997-1001.	4.6	10
3	Resonance photogeneration of hot electrons through Tamm surface states. Optics Letters, 2021, 46, 568.	3.3	4
4	Hot electron photoemission in metal–semiconductor structures aided by resonance tunneling. Applied Physics Letters, 2021, 118, .	3.3	4
5	Surface and volume photoeffect from metal nanoparticles with electron mass discontinuity. Physical Review B, 2021, 103, .	3.2	5
6	Direct Plasmonic Excitation of the Hybridized Surface States in Metal Nanoparticles. ACS Photonics, 2021, 8, 2041-2049.	6.6	17
7	Metal Nanoparticles with Effective Photoemission. Journal of Russian Laser Research, 2021, 42, 650.	0.6	1
8	Effect of quantized conductivity on the anomalous photon emission radiated from atomic-size point contacts. Nanophotonics, 2020, 9, 413-425.	6.0	5
9	Electrostatic Control over Optically Pumped Hot Electrons in Optical Gap Antennas. ACS Photonics, 2020, 7, 2153-2162.	6.6	2
10	Hot electron generation via internal surface photo-effect in structures with quantum well. , 2020, , .		2
11	Landau broadening of plasmonic resonances in the Mie theory. Optics Letters, 2020, 45, 2644.	3.3	5
12	Crucial Role of Metal Surface Morphology in Photon Emission from a Tunnel Junction at Ambient Conditions. Journal of Physical Chemistry C, 2019, 123, 8813-8817.	3.1	8
13	Coherent surface plasmon amplification through the dissipative instability of 2D direct current. Nanophotonics, 2018, 8, 135-143.	6.0	3
14	Superradiance with Incoherent Nonradiative Decay. Journal of Russian Laser Research, 2018, 39, 401-410.	0.6	0
15	Bulk Photoemission from Plasmonic Nanoantennas of Different Shapes. Journal of Physical Chemistry C, 2018, 122, 11985-11992.	3.1	5
16	Resonant Mass Detector Based on Carbon Nanowhiskers with Traps for Nanoobjects Weighing. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800046.	1.8	3
17	Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale. Beilstein Journal of Nanotechnology, 2018, 9, 1964-1976.	2.8	9
18	Plasmonic superradiance of two emitters near metal nanorod. , 2017, , .		0

Alexander V Uskov

#	Article	IF	CITATIONS
19	Electrically-driven optical antennas enabled by mesoscopic contacts. , 2017, , .		1
20	Efficient Q-switched operation in 1.64 Î $^1\!\!/$ m Er:YAG tapered rod laser. Proceedings of SPIE, 2017, , .	0.8	0
21	Pulse-burst Er:glass laser. , 2017, , .		2
22	Highly stable RF signal from a mode-locked laser stabilized to multiple saturated absorption lines. , 2017, , .		0
23	Biased Nanoscale Contact as Active Element for Electrically Driven Plasmonic Nanoantenna. ACS Photonics, 2017, 4, 1501-1505.	6.6	10
24	Plasmonic superradiance of two emitters near a metal nanorod. Journal Physics D: Applied Physics, 2017, 50, 254003.	2.8	3
25	Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling. Nanoscale, 2016, 8, 14573-14579.	5.6	40
26	Transition absorption as a mechanism of surface photoelectron emission from metals. Physica Status Solidi - Rapid Research Letters, 2015, 9, 570-574.	2.4	6
27	Bistability in a Quantum Nonlinear Oscillator Excited by a Stochastic Force. Journal of Russian Laser Research, 2015, 36, 458-466.	0.6	1
28	Bulk photoemission from metal films and nanoparticles. Quantum Electronics, 2015, 45, 50-58.	1.0	8
29	Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas. Nano Letters, 2015, 15, 5811-5818.	9.1	85
30	Hot Electron Photoemission from Plasmonic Nanostructures: The Role of Surface Photoemission and Transition Absorption. ACS Photonics, 2015, 2, 1039-1048.	6.6	33
31	Superradiance of several atoms near a metal nanosphere. Quantum Electronics, 2015, 45, 561-572.	1.0	13
32	Plasmonic nanocone arrays as photoconductive and photovoltaic metamaterials. , 2014, , .		0
33	Bulk photovoltaic effect in photoconductive metamaterials based on cone-shaped nanoparticles. Proceedings of SPIE, 2014, , .	0.8	0
34	Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas. Progress in Photovoltaics: Research and Applications, 2014, 22, 422-426.	8.1	30
35	Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects. Nanoscale, 2014, 6, 4716.	5.6	52
36	Broadening of Plasmonic Resonance Due to Electron Collisions with Nanoparticle Boundary: а Quantum Mechanical Consideration. Plasmonics, 2014, 9, 185-192.	3.4	48

Alexander V Uskov

#	Article	IF	CITATIONS
37	Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells. Plasmonics, 2014, 9, 283-289.	3.4	60
38	Dependence of the Electron Photoemission from Metallic Nanoparticles on Their Size. Journal of Russian Laser Research, 2014, 35, 501-508.	0.6	3
39	Giant Photogalvanic Effect in Noncentrosymmetric Plasmonic Nanoparticles. Physical Review X, 2014, 4, .	8.9	14
40	Electron photoemission in plasmonic nanoparticle arrays: analysis of collective resonances and embedding effects. Applied Physics A: Materials Science and Processing, 2014, 116, 929-940.	2.3	12
41	Increasing the efficiency of organic solar cells using plasmonic nanoparticles. Technical Physics Letters, 2013, 39, 450-453.	0.7	8
42	Non-Contact Detection of Nonlinear Conductance in Island Metal Films. Journal of Russian Laser Research, 2013, 34, 537-552.	0.6	0
43	Photoemission from metal nanoparticles. Physics-Uspekhi, 2012, 55, 508-518.	2.2	48
44	Control of the input efficiency of photons into solar cells with plasmonic nanoparticles. Optics Communications, 2011, 284, 2226-2229.	2.1	19
45	Auger Capture Induced Carrier Heating in Quantum Dot Lasers and Amplifiers. Applied Physics Express, 2011, 4, 022202.	2.4	19
46	Greatly enhanced slow and fast light in chirped pulse semiconductor optical amplifiers: Theory and experiments. Optics Express, 2009, 17, 2188.	3.4	8
47	Ultrahigh-bandwidth electrically tunable fast and slow light in semiconductor optical amplifiers [Invited]. Journal of the Optical Society of America B: Optical Physics, 2008, 25, C46.	2.1	8
48	Dipole lasing stimulated by nano-antenna. Proceedings of SPIE, 2008, , .	0.8	2
49	Novel Chirp-Enhanced Tunable Fast Light of Ultra-Short Pulses in Semiconductor Optical Amplifiers. , 2008, , .		0
50	Electrically tunable fast light at THz bandwidth using cascaded semiconductor optical amplifiers. Optics Express, 2007, 15, 15863.	3.4	11
51	Chirp-enhanced fast light in semiconductor optical amplifiers. Optics Express, 2007, 15, 17631.	3.4	14
52	Dynamics of light propagation in spatiotemporal dielectric structures. Physical Review E, 2007, 75, 046607.	2.1	124
53	The linewidth enhancement factor \hat{I}_{\pm} of quantum dot semiconductor lasers. Optics Express, 2006, 14, 2950.	3.4	119
54	Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers. Optics Express, 2006, 14, 12968.	3.4	37

#	Article	IF	CITATIONS
55	Slow and superluminal light based on four-wave mixing in semiconductor optical amplifiers. , 2006, , .		Ο
56	Theory of nonlinear gain due to spectral hole burning in quantum dot lasers and amplifiers. , 2005, , .		0
57	Damping and feedback characteristics of quantum dot semiconductor lasers. , 2004, , .		1
58	Nonlinear refractive index and pattern-effects-free cross-phase modulation in quantum dot semiconductor optical amplifiers. , 2004, , .		1
59	On pattern-effects-free operation of QD SOAs for high-speed applications. , 2004, , .		Ο
60	Photoemission from Metal Nanoparticles. , 0, , .		2