
David S Klimstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1827569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic characterization of small cell carcinomas of the uterine cervix. Molecular Oncology, 2022, 16, 833-845.	2.1	14
2	Integrating digital pathology into clinical practice. Modern Pathology, 2022, 35, 152-164.	2.9	42
3	Pancreatobiliary Maljunction-associated Gallbladder Cancer Is as Common in the West, Shows Distinct Clinicopathologic Characteristics and Offers an Invaluable Model for Anatomy-induced Reflux-associated Physio-chemical Carcinogenesis. Annals of Surgery, 2022, 276, e32-e39.	2.1	17
4	Efficient Visualization of Whole Slide Images in Web-based Viewers for Digital Pathology. Archives of Pathology and Laboratory Medicine, 2022, 146, 1273-1280.	1.2	4
5	Tumor MHC Class I Expression Associates with Intralesional IL2 Response in Melanoma. Cancer Immunology Research, 2022, 10, 303-313.	1.6	1
6	A Review of Mucinous Cystic and Intraductal Neoplasms of the Pancreatobiliary Tract. Archives of Pathology and Laboratory Medicine, 2022, 146, 298-311.	1.2	8
7	Cystic and Intraductal Neoplasms of the Pancreatobiliary Tract. Archives of Pathology and Laboratory Medicine, 2022, 146, 278-279.	1.2	1
8	Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocrine Pathology, 2022, 33, 115-154.	5.2	227
9	A Consensus-Developed Morphological Re-Evaluation of 196 High-Grade Gastroenteropancreatic Neuroendocrine Neoplasms and Its Clinical Correlations. Neuroendocrinology, 2021, 111, 883-894.	1.2	54
10	Diagnosis of digestive system tumours. International Journal of Cancer, 2021, 148, 1040-1050.	2.3	36
11	Platinum-Based Treatment for Well- and Poorly Differentiated Pancreatic Neuroendocrine Neoplasms. Pancreas, 2021, 50, 138-146.	0.5	8
12	Artificial Intelligence and Early Detection of Pancreatic Cancer. Pancreas, 2021, 50, 251-279.	0.5	71
13	An independent assessment of an artificial intelligence system for prostate cancer detection shows strong diagnostic accuracy. Modern Pathology, 2021, 34, 1588-1595.	2.9	53
14	Quantitative Computed Tomography Image Analysis to Predict Pancreatic Neuroendocrine Tumor Grade. JCO Clinical Cancer Informatics, 2021, 5, 679-694.	1.0	5
15	Integrated digital pathology at scale: A solution for clinical diagnostics and cancer research at a large academic medical center. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1874-1884.	2.2	39
16	Juan Rosai, MD (1940-2020). American Journal of Surgical Pathology, 2021, Publish Ahead of Print, e24-e34.	2.1	1
17	Digital Pathology Operations at an NYC Tertiary Cancer Center During the First 4 Months of COVID-19 Pandemic Response. Academic Pathology, 2021, 8, 23742895211010276.	0.7	18
18	Early Detection of Pancreatic Cancer. Pancreas, 2021, 50, 916-922.	0.5	20

#	Article	IF	CITATIONS
19	Pancreatoblastomas and mixed and pure acinar cell carcinomas share epigenetic signatures distinct from other neoplasms of the pancreas. Modern Pathology, 2021, , .	2.9	3
20	A semicentennial of pancreatic pathology: the genetic revolution is here, but don't throw the baby out with the bath water!. Human Pathology, 2020, 95, 99-112.	1.1	9
21	Sclerosing epithelioid mesenchymal neoplasm of the pancreas–Âa proposed new entity. Modern Pathology, 2020, 33, 456-467.	2.9	10
22	Development of Genome-Derived Tumor Type Prediction to Inform Clinical Cancer Care. JAMA Oncology, 2020, 6, 84.	3.4	66
23	DNAJB1-PRKACA fusions occur in oncocytic pancreatic and biliary neoplasms and are not specific for fibrolamellar hepatocellular carcinoma. Modern Pathology, 2020, 33, 648-656.	2.9	90
24	Discordant DNA mismatch repair protein status between synchronous or metachronous gastrointestinal carcinomas: frequency, patterns, and molecular etiologies. Familial Cancer, 2020, 20, 201-213.	0.9	8
25	DEAD-box RNA helicase protein DDX21 as a prognosis marker for early stage colorectal cancer with microsatellite instability. Scientific Reports, 2020, 10, 22085.	1.6	12
26	Intraductal papillary squamous neoplasm of the pancreas: Cyto-histologic correlation of a novel entity. Annals of Diagnostic Pathology, 2020, 48, 151583.	0.6	1
27	Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas. Science Advances, 2020, 6, eaaz3221.	4.7	67
28	Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Modern Pathology, 2020, 33, 2058-2066.	2.9	101
29	Simple mucinous cysts of the pancreas have heterogeneous somatic mutations. Human Pathology, 2020, 101, 1-9.	1.1	14
30	Validation of a digital pathology system including remote review during the COVID-19 pandemic. Modern Pathology, 2020, 33, 2115-2127.	2.9	112
31	Maspin as a Prognostic Marker for Early Stage Colorectal Cancer With Microsatellite Instability. Frontiers in Oncology, 2020, 10, 945.	1.3	11
32	Tumors of the Liver. , 2020, , 871-917.		0
33	Guidelines on the histopathology of chronic pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with the International Association of Pancreatology, the American Pancreatic Association, the Japan Pancreas Society, and the European Pancreatic Club. Pancreatology, 2020, 20, 586-593.	0.5	47
34	Gastrointestinal tissueâ€based molecular biomarkers: a practical categorisation based on the 2019 World Health Organization classification of epithelial digestive tumours. Histopathology, 2020, 77, 340-350.	1.6	26
35	STAT1 as a potential prognosis marker for poor outcomes of early stage colorectal cancer with microsatellite instability. PLoS ONE, 2020, 15, e0229252.	1.1	22
36	Prolyl 4-hydroxylase alpha 1 protein expression risk-stratifies early stage colorectal cancer. Oncotarget, 2020, 11, 813-824.	0.8	7

#	Article	IF	CITATIONS
37	(Re) Defining the High-Power Field for Digital Pathology. Journal of Pathology Informatics, 2020, 11, 33.	0.8	16
38	Somatic HNF1A mutations in the malignant transformation of hepatocellular adenomas: a retrospective analysis of data from MSK-IMPACT and TCGA. Human Pathology, 2019, 83, 1-6.	1.1	14
39	Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature Medicine, 2019, 25, 1301-1309.	15.2	1,320
40	Validation of mitotic cell quantification via microscopy and multiple whole-slide scanners. Diagnostic Pathology, 2019, 14, 65.	0.9	23
41	Histomorphology of pancreatic cancer in patients with inherited ATM serine/threonine kinase pathogenic variants. Modern Pathology, 2019, 32, 1806-1813.	2.9	21
42	Implementation of Digital Pathology Offers Clinical and Operational Increase in Efficiency and Cost Savings. Archives of Pathology and Laboratory Medicine, 2019, 143, 1545-1555.	1.2	81
43	A multimodality test to guide the management of patients with a pancreatic cyst. Science Translational Medicine, 2019, 11, .	5.8	129
44	Colorectal carcinoma with double somatic mismatch repair gene inactivation: clinical and pathological characteristics and response to immune checkpoint blockade. Modern Pathology, 2019, 32, 1551-1562.	2.9	12
45	Stage IV lung carcinoids: spectrum and evolution of proliferation rate, focusing on variants with elevated proliferation indices. Modern Pathology, 2019, 32, 1106-1122.	2.9	58
46	Solid pseudopapillary neoplasms of the pancreas are dependent on the Wnt pathway. Molecular Oncology, 2019, 13, 1684-1692.	2.1	21
47	WholeÂslide imaging equivalency and efficiency study: experience at a large academic center. Modern Pathology, 2019, 32, 916-928.	2.9	134
48	Intraductal Oncocytic Papillary Neoplasms. American Journal of Surgical Pathology, 2019, 43, 656-661.	2.1	40
49	Misinterpreted Myoepithelial Carcinoma of Salivary Gland. American Journal of Surgical Pathology, 2019, 43, 601-609.	2.1	44
50	Cellular localization of PD-L1 expression in mismatch-repair-deficient and proficient colorectal carcinomas. Modern Pathology, 2019, 32, 110-121.	2.9	28
51	Regional differences in gallbladder cancer pathogenesis: Insights from a multiâ€institutional comparison of tumor mutations. Cancer, 2019, 125, 575-585.	2.0	34
52	Diagnosis of known sarcoma fusions and novel fusion partners by targeted RNA sequencing with identification of a recurrent ACTB-FOSB fusion in pseudomyogenic hemangioendothelioma. Modern Pathology, 2019, 32, 609-620.	2.9	112
53	Prevalence of False-Negative Results of Intraoperative Consultation on Surgical Margins During Resection of Gastric and Gastroesophageal Adenocarcinoma. JAMA Surgery, 2019, 154, 126.	2.2	25
54	Limited role of Chromogranin A as clinical biomarker for pancreatic neuroendocrine tumors. Hpb, 2019, 21, 612-618.	0.1	34

#	Article	IF	CITATIONS
55	Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clinical Cancer Research, 2019, 25, 2116-2126.	3.2	390
56	Gastric Carcinomas With Lymphoid Stroma. American Journal of Surgical Pathology, 2018, 42, 453-462.	2.1	37
57	Well differentiated grade 3 pancreatic neuroendocrine tumors compared with related neoplasms: A morphologic study. Cancer Cytopathology, 2018, 126, 326-335.	1.4	20
58	Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations. Clinical Cancer Research, 2018, 24, 1326-1336.	3.2	281
59	Progression Patterns in the Remnant Pancreas after Resection of Non-Invasive or Micro-Invasive Intraductal Papillary Mucinous Neoplasms (IPMN). Annals of Surgical Oncology, 2018, 25, 1752-1759.	0.7	31
60	Immediate Postablation ¹⁸ F-FDG Injection and Corresponding SUV Are Surrogate Biomarkers of Local Tumor Progression After Thermal Ablation of Colorectal Carcinoma Liver Metastases. Journal of Nuclear Medicine, 2018, 59, 1360-1365.	2.8	33
61	Assessment of cytologic differentiation in highâ€grade pancreatic neuroendocrine neoplasms: A multiâ€institutional study. Cancer Cytopathology, 2018, 126, 44-53.	1.4	22
62	Immunohistochemical null-phenotype for mismatch repair proteins in colonic carcinoma associated with concurrent MLH1 hypermethylation and MSH2 somatic mutations. Familial Cancer, 2018, 17, 225-228.	0.9	17
63	A FISH assay efficiently screens for BRAF gene rearrangements in pancreatic acinar-type neoplasms. Modern Pathology, 2018, 31, 132-140.	2.9	17
64	Wellâ€differentiated pancreatic neuroendocrine tumours (Pan <scp>NET</scp> s) and poorly differentiated pancreatic neuroendocrine carcinomas (Pan <scp>NEC</scp> s): concepts, issues and a practical diagnostic approach to highâ€grade (G3) cases. Histopathology, 2018, 72, 168-177.	1.6	75
65	ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup. Nature Communications, 2018, 9, 4158.	5.8	138
66	Precancerous neoplastic cells can move through the pancreatic ductal system. Nature, 2018, 561, 201-205.	13.7	96
67	Characterization of hepatocellular adenoma and carcinoma using microRNA profiling and targeted gene sequencing. PLoS ONE, 2018, 13, e0200776.	1.1	30
68	A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Modern Pathology, 2018, 31, 1770-1786.	2.9	739
69	Quantitative CT analysis for the preoperative prediction of pathologic grade in pancreatic neuroendocrine tumors. , 2018, , .		0
70	Cytology assessment can predict survival for patients with metastatic pancreatic neuroendocrine neoplasms. Cancer Cytopathology, 2017, 125, 188-196.	1.4	13
71	Chromosome 20q Amplification Defines a Subtype of Microsatellite Stable, Left-Sided Colon Cancers with Wild-type RAS/RAF and Better Overall Survival. Molecular Cancer Research, 2017, 15, 708-713.	1.5	24
72	Universal screening for microsatellite instability in colorectal cancer in the clinical genomics era: new recommendations, methods, and considerations. Familial Cancer, 2017, 16, 525-529.	0.9	18

#	Article	IF	CITATIONS
73	Treatment Response and Outcomes of Grade 3 Pancreatic Neuroendocrine Neoplasms Based on Morphology. Pancreas, 2017, 46, 296-301.	0.5	90
74	Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature Medicine, 2017, 23, 703-713.	15.2	2,473
75	Intraductal Tubulopapillary Neoplasm of the Pancreas. American Journal of Surgical Pathology, 2017, 41, 313-325.	2.1	76
76	Diagnosing colorectal medullary carcinoma: interobserver variability and clinicopathological implications. Human Pathology, 2017, 62, 74-82.	1.1	17
77	Morphological characterization of colorectal cancers in The Cancer Genome Atlas reveals distinct morphology–molecular associations: clinical and biological implications. Modern Pathology, 2017, 30, 599-609.	2.9	74
78	Real-Time Genomic Profiling of Pancreatic Ductal Adenocarcinoma: Potential Actionability and Correlation with Clinical Phenotype. Clinical Cancer Research, 2017, 23, 6094-6100.	3.2	161
79	Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2017, 32, 185-203.e13.	7.7	1,428
80	Pancreatic intraductal tubulopapillary neoplasm is genetically distinct from intraductal papillary mucinous neoplasm and ductal adenocarcinoma. Modern Pathology, 2017, 30, 1760-1772.	2.9	67
81	Case report: primary acinar cell carcinoma of the liver treated with multimodality therapy. Journal of Gastrointestinal Oncology, 2017, 8, E65-E72.	0.6	4
82	Title is missing!. , 2017, , .		7
83	Title is missing!. , 2017, , .		10
84	Genome and transcriptome profiling of fibrolamellar hepatocellular carcinoma demonstrates p53 and IGF2BP1 dysregulation. PLoS ONE, 2017, 12, e0176562.	1.1	24
85	MicroRNAs of the <i>mir-17~92</i> cluster regulate multiple aspects of pancreatic tumor development and progression. Oncotarget, 2017, 8, 35902-35918.	0.8	24
86	Pancreatic and periampullary tumors. , 2017, , 938-957.e6.		0
87	Recurrent, truncating <i>SOX9</i> mutations are associated with SOX9 overexpression, <i>KRAS</i> mutation, and <i>TP53</i> wild type status in colorectal carcinoma. Oncotarget, 2016, 7, 50875-50882.	0.8	26
88	Pathologic Evaluation and Reporting of Intraductal Papillary Mucinous Neoplasms of the Pancreas and Other Tumoral Intraepithelial Neoplasms of Pancreatobiliary Tract. Annals of Surgery, 2016, 263, 162-177.	2.1	223
89	Unresectable intrahepatic cholangiocarcinoma: Systemic plus hepatic arterial infusion chemotherapy is associated with longer survival in comparison with systemic chemotherapy alone. Cancer, 2016, 122, 758-765.	2.0	138
90	Activation of WNT∫β-Catenin Signaling Enhances Pancreatic Cancer Development and the Malignant Potential Via Up-regulation of Cyr61. Neoplasia, 2016, 18, 785-794.	2.3	49

#	Article	IF	CITATIONS
91	Colorectal Cancer Liver Metastases: Biopsy of the Ablation Zone and Margins Can Be Used to Predict Oncologic Outcome. Radiology, 2016, 280, 949-959.	3.6	108
92	ARID1A expression in early stage colorectal adenocarcinoma: an exploration of its prognostic significance. Human Pathology, 2016, 53, 97-104.	1.1	18
93	Esophageal adenocarcinoma and squamous cell carcinoma in children and adolescents: Report of 3 cases and comprehensive literature review. Journal of Pediatric Surgery Case Reports, 2016, 5, 23-29.	0.1	12
94	Cyst Fluid Analysis in Pancreatic Intraductal Papillary Mucinous Neoplasms. Clinical Cancer Research, 2016, 22, 4966-4967.	3.2	5
95	Distinct pathways of pathogenesis of intraductal oncocytic papillary neoplasms and intraductal papillary mucinous neoplasms of the pancreas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2016, 469, 523-532.	1.4	65
96	p53 and p16/p19 Loss Promotes Different Pancreatic Tumor Types from PyMT-Expressing Progenitor Cells. Neoplasia, 2016, 18, 610-617.	2.3	10
97	The ENETS/WHO grading system for neuroendocrine neoplasms of the gastroenteropancreatic system: a review of the current state, limitations and proposals for modifications. International Journal of Endocrine Oncology, 2016, 3, 203-219.	0.4	31
98	Patterns and prognostic relevance of PD-1 and PD-L1 expression in colorectal carcinoma. Modern Pathology, 2016, 29, 1433-1442.	2.9	144
99	mTORC2 Signaling Drives the Development and Progression of Pancreatic Cancer. Cancer Research, 2016, 76, 6911-6923.	0.4	63
100	Reassessing the grade of gastroenteropancreatic neuroendocrine neoplasms. Endocrine, 2016, 53, 4-6.	1.1	6
101	Acinar neoplasms of the pancreas—A summary of 25 years of research. Seminars in Diagnostic Pathology, 2016, 33, 307-318.	1.0	43
102	Cytological features contributing to the misclassification of pancreatic neuroendocrine tumors. Journal of the American Society of Cytopathology, 2016, 5, 266-276.	0.2	9
103	A Practical Approach to the Classification of WHO Grade 3 (G3) Well-differentiated Neuroendocrine Tumor (WD-NET) and Poorly Differentiated Neuroendocrine Carcinoma (PD-NEC) of the Pancreas. American Journal of Surgical Pathology, 2016, 40, 1192-1202.	2.1	278
104	Mammary analog secretory carcinoma of the thyroid gland: A primary thyroid adenocarcinoma harboring ETV6–NTRK3 fusion. Modern Pathology, 2016, 29, 985-995.	2.9	74
105	The oncocytic subtype is genetically distinct from other pancreatic intraductal papillary mucinous neoplasm subtypes. Modern Pathology, 2016, 29, 1058-1069.	2.9	82
106	Germline Variants in Targeted Tumor Sequencing Using Matched Normal DNA. JAMA Oncology, 2016, 2, 104.	3.4	270
107	Well-Differentiated Neuroendocrine Tumors with a Morphologically Apparent High-Grade Component: A Pathway Distinct from Poorly Differentiated Neuroendocrine Carcinomas. Clinical Cancer Research, 2016, 22, 1011-1017.	3.2	264
108	Pathologic Classification of Neuroendocrine Neoplasms. Hematology/Oncology Clinics of North America, 2016, 30, 1-19.	0.9	49

#	Article	IF	CITATIONS
109	Follicular pancreatitis: a distinct form of chronic pancreatitis—an additional mimic of pancreatic neoplasms. Human Pathology, 2016, 48, 154-162.	1.1	19
110	Circulating Plasma Levels of MicroRNA-21 and MicroRNA-221 Are Potential Diagnostic Markers for Primary Intrahepatic Cholangiocarcinoma. PLoS ONE, 2016, 11, e0163699.	1.1	52
111	Biliary carcinomas: pathology and the role of DNA mismatch repair deficiency. Chinese Clinical Oncology, 2016, 5, 62-62.	0.4	131
112	A Revised Classification System and Recommendations From the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. American Journal of Surgical Pathology, 2015, 39, 1730-1741.	2.1	626
113	Prospective evaluation of 18Fâ€fluorodeoxyglucose positron emission tomography in patients receiving hepatic arterial and systemic chemotherapy for unresectable colorectal liver metastases. Hpb, 2015, 17, 644-650.	0.1	5
114	The High-grade (WHO G3) Pancreatic Neuroendocrine Tumor Category Is Morphologically and Biologically Heterogenous and Includes Both Well Differentiated and Poorly Differentiated Neoplasms. American Journal of Surgical Pathology, 2015, 39, 683-690.	2.1	396
115	The Spectrum of Neuroendocrine Tumors: Histologic Classification, Unique Features and Areas of Overlap. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , 92-103.	1.8	48
116	ACTH-secreting Pancreatic Neoplasms Associated With Cushing Syndrome. American Journal of Surgical Pathology, 2015, 39, 374-382.	2.1	72
117	Organoid Models of Human and Mouse Ductal Pancreatic Cancer. Cell, 2015, 160, 324-338.	13.5	1,584
118	Prognostic factors in fibrolamellar hepatocellular carcinoma in young people. Journal of Pediatric Surgery, 2015, 50, 153-156.	0.8	54
119	Sequencing of 279 cancer genes in ampullary carcinoma reveals trends relating to histologic subtypes and frequent amplification and overexpression of ERBB2 (HER2). Modern Pathology, 2015, 28, 1123-1129.	2.9	51
120	A Combination of Molecular Markers and Clinical Features Improve the Classification of Pancreatic Cysts. Gastroenterology, 2015, 149, 1501-1510.	0.6	376
121	Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nature Communications, 2015, 6, 7686.	5.8	393
122	GNAS and KRAS Mutations Define Separate Progression Pathways in Intraductal Papillary Mucinous Neoplasm-Associated Carcinoma. Journal of the American College of Surgeons, 2015, 220, 845-854e1.	0.2	154
123	Consensus on biomarkers for neuroendocrine tumour disease. Lancet Oncology, The, 2015, 16, e435-e446.	5.1	217
124	Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells. Nature Communications, 2015, 6, 8070.	5.8	86
125	The p53R172H Mutant Does Not Enhance Hepatocellular Carcinoma Development and Progression. PLoS ONE, 2015, 10, e0123816.	1.1	6
126	Adenocarcinoma of the pancreas. Seminars in Diagnostic Pathology, 2014, 31, 443-451.	1.0	42

#	Article	IF	CITATIONS
127	Cutaneous metastases as an initial manifestation of visceral wellâ€differentiated neuroendocrine tumor: a report of four cases and a review of literature. Journal of Cutaneous Pathology, 2014, 41, 113-122.	0.7	24
128	Gastroenteropancreatic highâ€grade neuroendocrine carcinoma. Cancer, 2014, 120, 2814-2823.	2.0	277
129	Immunohistochemical detection of ARID1A in colorectal carcinoma: loss of staining is associated with sporadic microsatellite unstable tumors with medullary histology and high TNM stage. Human Pathology, 2014, 45, 2430-2436.	1.1	41
130	Wholeâ€exome sequencing of pancreatic neoplasms with acinar differentiation. Journal of Pathology, 2014, 232, 428-435.	2.1	151
131	Pathology and genetics of pancreatic neoplasms with acinar differentiation. Seminars in Diagnostic Pathology, 2014, 31, 491-497.	1.0	59
132	Comprehensive Genomic Profiling of Pancreatic Acinar Cell Carcinomas Identifies Recurrent <i>RAF</i> Fusions and Frequent Inactivation of DNA Repair Genes. Cancer Discovery, 2014, 4, 1398-1405.	7.7	151
133	Poorly Differentiated Neuroendocrine Carcinomas of the Pancreas. American Journal of Surgical Pathology, 2014, 38, 437-447.	2.1	216
134	Pathologic Grade and Tumor Size are Associated with Recurrence-Free Survival in Patients with Duodenal Neuroendocrine Tumors. Journal of Gastrointestinal Surgery, 2014, 18, 457-463.	0.9	68
135	Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes and Development, 2014, 28, 2134-2150.	2.7	92
136	Choledochal cysts: a clinicopathologic study of 36 cases with emphasis on the morphologic and the immunohistochemical features of premalignant and malignant alterations. Human Pathology, 2014, 45, 2107-2114.	1.1	53
137	Pancreatic neuroendocrine tumors: Pathologic and molecular characteristics. Seminars in Diagnostic Pathology, 2014, 31, 498-511.	1.0	57
138	Activated Wnt Signaling in Stroma Contributes to Development ofÂPancreatic Mucinous Cystic Neoplasms. Gastroenterology, 2014, 146, 257-267.	0.6	35
139	DNA Mismatch Repair Abnormalities in Acinar Cell Carcinoma of the Pancreas. Pancreas, 2014, 43, 1264-1270.	0.5	34
140	Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nature Genetics, 2013, 45, 1470-1473.	9.4	564
141	Cytomorphologic and immunophenotypical features of acinar cell neoplasms of the pancreas. Cancer Cytopathology, 2013, 121, 459-470.	1.4	57
142	Use of touch imprint cytology as a simple method to enrich tumor cells for molecular analysis. Cancer Cytopathology, 2013, 121, 354-360.	1.4	22
143	Gastroenteropancreatic neuroendocrine neoplasms: Historical context and current issues. Seminars in Diagnostic Pathology, 2013, 30, 186-196.	1.0	40
144	Pathology Reporting of Neuroendocrine Tumors: Essential Elements for Accurate Diagnosis, Classification, and Staging. Seminars in Oncology, 2013, 40, 23-36.	0.8	87

#	Article	IF	CITATIONS
145	Grading of Well-differentiated Pancreatic Neuroendocrine Tumors Is Improved by the Inclusion of Both Ki67 Proliferative Index and Mitotic Rate. American Journal of Surgical Pathology, 2013, 37, 1671-1677.	2.1	148
146	Consensus Guidelines for the Management and Treatment of Neuroendocrine Tumors. Pancreas, 2013, 42, 557-577.	0.5	494
147	A Case Report of a Patient with Advanced Acinar Cell Carcinoma of the Pancreas: Long-Term Survival with Regional, Systemic and Targeted Therapy. Tumori, 2013, 99, e61-e64.	0.6	9
148	Pancreatic and periampullary tumors. , 2012, , 882-900.e4.		0
149	A rationale for multidisciplinary care in treating neuroendocrine tumours. Current Opinion in Endocrinology, Diabetes and Obesity, 2012, 19, 306-313.	1.2	38
150	Attenuation of the Retinoblastoma Pathway in Pancreatic Neuroendocrine Tumors Due to Increased Cdk4/Cdk6. Clinical Cancer Research, 2012, 18, 4612-4620.	3.2	89
151	Objective Quantification of the Ki67 Proliferative Index in Neuroendocrine Tumors of the Gastroenteropancreatic System. American Journal of Surgical Pathology, 2012, 36, 1761-1770.	2.1	232
152	The Prevalence of Pancreatic Acinar Differentiation in Gastric Adenocarcinoma. American Journal of Surgical Pathology, 2012, 36, 402-408.	2.1	5
153	Small Cell and Large Cell Neuroendocrine Carcinomas of the Pancreas are Genetically Similar and Distinct From Well-differentiated Pancreatic Neuroendocrine Tumors. American Journal of Surgical Pathology, 2012, 36, 173-184.	2.1	468
154	Intraductal Tubular Neoplasms of the Bile Ducts. American Journal of Surgical Pathology, 2012, 36, 1647-1655.	2.1	72
155	Synchronous Resection of Primary and Liver Metastases for Neuroendocrine Tumors. Annals of Surgical Oncology, 2012, 19, 4270-4277.	0.7	60
156	Intraductal papillary neoplasm of the bile duct: A biliary equivalent to intraductal papillary mucinous neoplasm of the pancreas?. Hepatology, 2012, 56, 1352-1360.	3.6	229
157	Unusual DNA mismatch repair–deficient tumors in Lynch syndrome: a report of new cases and review of the literature. Human Pathology, 2012, 43, 1677-1687.	1.1	93
158	Tumors of the biliary tree. , 2012, , 719-727.e2.		0
159	Significance of CEACAM6 expression in biliary tract carcinoma Journal of Clinical Oncology, 2012, 30, 207-207.	0.8	0
160	Conundrums and Caveats in Neuroendocrine Tumors of the Pancreas. Surgical Pathology Clinics, 2011, 4, 589-624.	0.7	8
161	<i>DAXX</i> / <i>ATRX</i> , <i>MEN1</i> , and mTOR Pathway Genes Are Frequently Altered in Pancreatic Neuroendocrine Tumors. Science, 2011, 331, 1199-1203.	6.0	1,504
162	Effect of Tumor Heterogeneity on the Assessment of Ki67 Labeling Index in Well-differentiated Neuroendocrine Tumors Metastatic to the Liver. American Journal of Surgical Pathology, 2011, 35, 853-860.	2.1	298

#	Article	IF	CITATIONS
163	Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21188-21193.	3.3	585
164	Acinar Cell Carcinoma of the Pancreas: New Genetic and Treatment Insights into a Rare Malignancy. Oncologist, 2011, 16, 1714-1720.	1.9	121
165	Cyst Fluid Interleukin-1β (IL1β) Levels Predict the Risk of Carcinoma in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Clinical Cancer Research, 2011, 17, 1502-1508.	3.2	120
166	Preferential Expression of MUC6 in Oncocytic and Pancreatobiliary Types of Intraductal Papillary Neoplasms Highlights a Pyloropancreatic Pathway, Distinct From the Intestinal Pathway, in Pancreatic Carcinogenesis. American Journal of Surgical Pathology, 2010, 34, 364-370.	2.1	357
167	Pathology Reporting of Neuroendocrine Tumors: Application of the Delphic Consensus Process to the Development of a Minimum Pathology Data Set. American Journal of Surgical Pathology, 2010, 34, 300-313.	2.1	312
168	Pancreatic Acinar Cell Carcinomas With Prominent Ductal Differentiation: Mixed Acinar Ductal Carcinoma and Mixed Acinar Endocrine Ductal Carcinoma. American Journal of Surgical Pathology, 2010, 34, 510-518.	2.1	78
169	Localized intrapancreatic malignant mesothelioma: a rare entity that may be confused with other pancreatic neoplasms. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2010, 456, 455-461.	1.4	18
170	The ENETS and AJCC/UICC TNM classifications of the neuroendocrine tumors of the gastrointestinal tract and the pancreas: a statement. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2010, 456, 595-597.	1.4	218
171	The Pathologic Classification of Neuroendocrine Tumors. Pancreas, 2010, 39, 707-712.	0.5	941
172	NANETS Treatment Guidelines. Pancreas, 2010, 39, 735-752.	0.5	494
173	Gene Amplifications in Well-Differentiated Pancreatic Neuroendocrine Tumors Inactivate the p53 Pathway. Genes and Cancer, 2010, 1, 360-368.	0.6	101
174	Use of immunohistochemistry for IgG4 in the distinction of autoimmune pancreatitis from peritumoral pancreatitis. Human Pathology, 2010, 41, 643-652.	1.1	128
175	DNA Mismatch Repair Deficiency in Ampullary Carcinoma. American Journal of Clinical Pathology, 2010, 133, 772-780.	0.4	38
176	Activation of PyMT in β Cells Induces Irreversible Hyperplasia, but Oncogene-Dependent Acinar Cell Carcinomas When Activated in Pancreatic Progenitors. PLoS ONE, 2009, 4, e6932.	1.1	13
177	Benign and Malignant Tumors of the Gallbladder and Extrahepatic Biliary Tract. , 2009, , 845-875.		23
178	Tumors of the Pancreas and Ampulla of Vater. , 2009, , 909-960.		6
179	Immunohistochemistry as First-line Screening for Detecting Colorectal Cancer Patients at Risk for Hereditary Nonpolyposis Colorectal Cancer Syndrome. American Journal of Surgical Pathology, 2009, 33, 1639-1645.	2.1	155
180	Mucus Rupture (Extrusion) and Duct Expansion/Expansive Growth are not Diagnostic of Minimal Invasion When Seen With Intraductal Papillary Mucinous Neoplasms. American Journal of Surgical Pathology, 2009, 33, 320-321.	2.1	7

#	Article	IF	CITATIONS
181	An Algorithmic Approach to the Diagnosis of Pancreatic Neoplasms. Archives of Pathology and Laboratory Medicine, 2009, 133, 454-464.	1.2	78
182	Selected Reviews on Topics in Oncologic Pathology Related to Tumors of the Breast, Gynecologic Organs, and Head and Neck Region. Archives of Pathology and Laboratory Medicine, 2009, 133, 681-682.	1.2	0
183	Histologic grade is correlated with outcome after resection of hepatic neuroendocrine neoplasms. Cancer, 2008, 113, 126-134.	2.0	81
184	Is Nonsmall Cell Type High-grade Neuroendocrine Carcinoma of the Tubular Gastrointestinal Tract a Distinct Disease Entity?. American Journal of Surgical Pathology, 2008, 32, 719-731.	2.1	166
185	Pathologic Classification and Clinical Behavior of the Spectrum of Goblet Cell Carcinoid Tumors of the Appendix. American Journal of Surgical Pathology, 2008, 32, 1429-1443.	2.1	284
186	Acinar Cell Carcinoma of the Pancreas Metastatic to the Ovary. American Journal of Surgical Pathology, 2008, 32, 1540-1545.	2.1	27
187	Determining Prognosis in Patients With Pancreatic Endocrine Neoplasms: Can the WHO Classification System Be Simplified?. Journal of Clinical Oncology, 2007, 25, 5609-5615.	0.8	163
188	The 2006 Fred Waldorf Stewart Award Recipient Juan Rosai, MD. American Journal of Surgical Pathology, 2007, 31, 649-651.	2.1	2
189	Intraductal and Papillary Variants of Acinar Cell Carcinomas. American Journal of Surgical Pathology, 2007, 31, 363-370.	2.1	121
190	Nonductal neoplasms of the pancreas. Modern Pathology, 2007, 20, S94-S112.	2.9	169
191	Fate of the Remnant Pancreas after Resection of Noninvasive Intraductal Papillary Mucinous Neoplasm. Journal of the American College of Surgeons, 2007, 204, 987-993.	0.2	151
192	Carcinoid of the Rectum Risk Stratification (CaRRS): A Strategy for Preoperative Outcome Assessment. Annals of Surgical Oncology, 2007, 14, 396-404.	0.7	71
193	Carcinoid of the Rectum Risk Stratification (CaRRs): A Strategy for Preoperative Outcome Assessment. Annals of Surgical Oncology, 2007, 14, 1735-1743.	0.7	86
194	Extranodal follicular dendritic cell sarcoma: clinical, pathologic, and histogenetic characteristics of an underrecognized disease entity. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2006, 449, 148-158.	1.4	118
195	High-Grade Neuroendocrine Carcinoma of the Ampulla of Vater. American Journal of Surgical Pathology, 2005, 29, 588-594.	2.1	115
196	Pleomorphic Pancreatic Endocrine Neoplasms. American Journal of Surgical Pathology, 2005, 29, 1194-1200.	2.1	52
197	Histopathological Diagnosis of Pancreatic Intraepithelial Neoplasia and Intraductal Papillary-Mucinous Neoplasms: Interobserver Agreement. Pancreas, 2005, 31, 344-349.	0.5	92
198	Clinically Aggressive Solid Pseudopapillary Tumors of the Pancreas. American Journal of Surgical Pathology, 2005, 29, 512-519.	2.1	320

#	Article	IF	CITATIONS
199	Pancreatic Solid and Cystic Hamartoma in Adults. American Journal of Surgical Pathology, 2005, 29, 797-800.	2.1	72
200	Composite Glandular and Endocrine Tumors of the Stomach With Pancreatic Acinar Differentiation. American Journal of Surgical Pathology, 2005, 29, 1524-1529.	2.1	44
201	Adenocarcinoma arising in a tailgut cyst with prominent meningothelial proliferation and thyroid tissue: case report and review of the literature. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 446, 316-321.	1.4	29
202	Malignant mesothelioma with a pronounced myxoid stroma: a clinical and pathological evaluation of 19 cases. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 447, 828-834.	1.4	29
203	Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 447, 794-799.	1.4	595
204	Cystic, mucin-producing neoplasms of the pancreas: the distinguishing features of mucinous cystic neoplasms and intraductal papillary mucinous neoplasms. Seminars in Diagnostic Pathology, 2005, 22, 318-329.	1.0	32
205	The utility of immunohistochemical detection of DNA mismatch repair gene proteins. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2004, 445, 431-441.	1.4	96
206	Lymphohistiocytoid Mesothelioma: A Clinical, Immunohistochemical and Ultrastructural Study of Four Cases and Literature Review. Ultrastructural Pathology, 2004, 28, 213-228.	0.4	25
207	Pancreatic pseudotumors: non-neoplastic solid lesions of the pancreas that clinically mimic pancreas cancer. Seminars in Diagnostic Pathology, 2004, 21, 260-267.	1.0	88
208	Lymphoplasmacytic sclerosing (autoimmune) pancreatitis. Seminars in Diagnostic Pathology, 2004, 21, 237-246.	1.0	49
209	Ductuloinsular Tumors of the Pancreas: Endocrine Tumors With Entrapped Nonneoplastic Ductules. American Journal of Surgical Pathology, 2004, 28, 813-820.	2.1	38
210	Intraductal Papillary Mucinous Neoplasms of the Pancreas. Annals of Surgery, 2004, 239, 400-408.	2.1	318
211	An Illustrated Consensus on the Classification of Pancreatic Intraepithelial Neoplasia and Intraductal Papillary Mucinous Neoplasms. American Journal of Surgical Pathology, 2004, 28, 977-987.	2.1	964
212	Pathologically and Biologically Distinct Types of Epithelium in Intraductal Papillary Mucinous Neoplasms. American Journal of Surgical Pathology, 2004, 28, 839-848.	2.1	440
213	Lymphoplasmacytic Sclerosing Pancreatitis Inflammatory Mimic of Pancreatic Carcinoma. Journal of Gastrointestinal Surgery, 2003, 7, 129-139.	0.9	231
214	Immunohistochemical Staining of Cytologic Smears With MIB-1 Helps Distinguish Low-Grade From High-Grade Neuroendocrine Neoplasms. American Journal of Clinical Pathology, 2003, 120, 209-216.	0.4	67
215	Value of Histopathology in Predicting Microsatellite Instability in Hereditary Nonpolyposis Colorectal Cancer and Sporadic Colorectal Cancer. American Journal of Surgical Pathology, 2003, 27, 1407-1417.	2.1	200
216	Pathogenesis of Colloid (Pure Mucinous) Carcinoma of Exocrine Organs. American Journal of Surgical Pathology, 2003, 27, 571-578.	2.1	171

#	Article	IF	CITATIONS
217	Deciduoid Mesothelioma: A Report of 5 Cases and Literature Review. Ultrastructural Pathology, 2002, 26, 355-363.	0.4	59
218	Prognostic Factors in Pancreatic Endocrine Neoplasms: An Analysis of 136 Cases With a Proposal for Low-Grade and Intermediate-Grade Groups. Journal of Clinical Oncology, 2002, 20, 2633-2642.	0.8	379
219	Clinical Characteristics and Outcomes From an Institutional Series of Acinar Cell Carcinoma of the Pancreas and Related Tumors. Journal of Clinical Oncology, 2002, 20, 4673-4678.	0.8	268
220	Lymphoepithelial Cysts of the Pancreas: a Report of 12 Cases and a Review of the Literature. Modern Pathology, 2002, 15, 492-501.	2.9	182
221	Combined Hepatocellular–Cholangiocarcinoma. American Journal of Surgical Pathology, 2002, 26, 989-997.	2.1	128
222	Primitive Neuroectodermal Tumors of the Pancreas. American Journal of Surgical Pathology, 2002, 26, 1040-1047.	2.1	82
223	Acinar Cell Cystadenoma of the Pancreas. American Journal of Surgical Pathology, 2002, 26, 698-704.	2.1	112
224	Solid-Pseudopapillary Tumors of the Pancreas Are Genetically Distinct from Pancreatic Ductal Adenocarcinomas and Almost Always Harbor β-catenin Mutations. American Journal of Pathology, 2002, 160, 1361-1369.	1.9	451
225	Genetic and Immunohistochemical Analysis of Pancreatic Acinar Cell Carcinoma. American Journal of Pathology, 2002, 160, 953-962.	1.9	264
226	Malignant pancreatic tumors in childhood and adolescence: The Memorial Sloan-Kettering experience, 1967 to present. Journal of Pediatric Surgery, 2002, 37, 887-892.	0.8	185
227	Intraductal papillary-mucinous neoplasms of the pancreas. Cancer, 2002, 94, 62-77.	2.0	297
228	Hepatic intraductal oncocytic papillary carcinoma. Cancer, 2002, 95, 2180-2187.	2.0	44
229	Solid-pseudopapillary tumor of the pancreas: A surgical enigma?. Annals of Surgical Oncology, 2002, 9, 35-40.	0.7	374
230	The Dichotomy in the Preinvasive Neoplasia to Invasive Carcinoma Sequence in the Pancreas: Differential Expression of MUC1 and MUC2 Supports the Existence of Two Separate Pathways of Carcinogenesis. Modern Pathology, 2002, 15, 1087-1095.	2.9	263
231	Results after pancreatic resection for metastatic lesions. , 2002, 9, 675.		7
232	Distinctive Molecular Genetic Alterations in Sporadic and Familial Adenomatous Polyposis-Associated Pancreatoblastomas. American Journal of Pathology, 2001, 159, 1619-1627.	1.9	251
233	Pancreatic Intraepithelial Neoplasia. American Journal of Surgical Pathology, 2001, 25, 579-586.	2.1	1,051
234	Acinar Cell Carcinoma of the Pancreas: A Case Associated With the Lipase Hypersecretion Syndrome. , 2001, 6, 121-126.		13

#	Article	IF	CITATIONS
235	Colloid (Mucinous Noncystic) Carcinoma of the Pancreas. American Journal of Surgical Pathology, 2001, 25, 26-42.	2.1	310
236	Lymphoplasmacytic Sclerosing Pancreatitis With Pseudotumor Formation. , 2001, 6, 94-99.		15
237	Staging, Resectability, and Outcome in 225 Patients With Hilar Cholangiocarcinoma. Annals of Surgery, 2001, 234, 507-519.	2.1	1,153
238	Intrahepatic Cholangiocarcinoma: resectability, recurrence pattern, and outcomes. Journal of the American College of Surgeons, 2001, 193, 384-391.	0.2	343
239	Lymph node micrometastases do not predict relapse in stage II colon cancer. Annals of Surgical Oncology, 2000, 7, 601-608.	0.7	91
240	Dpc-4 Protein Is Expressed in Virtually All Human Intraductal Papillary Mucinous Neoplasms of the Pancreas. American Journal of Pathology, 2000, 157, 755-761.	1.9	245
241	In vivo interleukin-2 gene therapy of established tumors with herpes simplex amplicon vectors. Cancer Immunology, Immunotherapy, 1999, 47, 265-271.	2.0	19
242	Recommendations for the Reporting of Pancreatic Specimens Containing Malignant Tumors. American Journal of Clinical Pathology, 1999, 111, 304-307.	0.4	36
243	High Telomerase Activity in Primary Lung Cancers: Association With Increased Cell Proliferation Rates and Advanced Pathologic Stage. Journal of the National Cancer Institute, 1997, 89, 1609-1615.	3.0	177
244	Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nature Genetics, 1997, 17, 79-83.	9.4	630
245	Molecular Markers Help Characterize Neuroendocrine Lung Tumors. Annals of Thoracic Surgery, 1996, 62, 798-810.	0.7	118
246	Subclassification of Gastrointestinal Stromal Tumors Based on Evaluation by Electron Microscopy and Immunohistochemistry. Ultrastructural Pathology, 1996, 20, 373-393.	0.4	141
247	Diagnosis and treatment of focal nodular hyperplasia. Journal of Hepato-Biliary-Pancreatic Surgery, 1996, 3, 111-121.	2.0	2
248	Low grade salivary duct carcinoma: A distinctive variant with a low grade histology and a predominant intraductal growth pattern. , 1996, 78, 958-967.		178
249	Intraductal Oncocytic Papillary Neoplasms of the Pancreas. American Journal of Surgical Pathology, 1996, 20, 980-994.	2.1	259
250	Microadenocarcinoma of the Pancreas— Morphologic Pattern or Pathologic Entity?. American Journal of Surgical Pathology, 1996, 20, 1385-1393.	2.1	13
251	Solid Serous Adenoma of the Pancreas. American Journal of Surgical Pathology, 1996, 20, 1401-1405.	2.1	133
252	Pancreatoblastoma A Clinicopathologic Study and Review of the Literature. American Journal of Surgical Pathology, 1995, 19, 1371-1389.	2.1	234

#	Article	IF	CITATIONS
253	Mixed Acinar-Endocrine Carcinomas of the Pancreas. American Journal of Surgical Pathology, 1994, 18, 765-778.	2.1	202
254	Sarcoidosis of the pancreas. Journal of Surgical Oncology, 1993, 54, 132-137.	0.8	18
255	Acinar Cell Carcinoma of the Pancreas. American Journal of Surgical Pathology, 1992, 16, 815-837.	2.1	542
256	Pathology of Exocrine Pancreatic Tumors. , 0, , 601-613.		2