
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1827563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A rich and bountiful harvest: Key discoveries in plant cell biology. Plant Cell, 2022, 34, 53-71.	3.1	7
2	Aerial (+)-borneol modulates root morphology, auxin signalling and meristematic activity in Arabidopsis roots. Biology Letters, 2022, 18, 20210629.	1.0	2
3	Plant ESCRT protein ALIX coordinates with retromer complex in regulating receptor-mediated sorting of soluble vacuolar proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200492119.	3.3	12
4	The Arabidopsis transcription factor NAI1 activates the <i>NAI2</i> promoter by binding to the G-box motifs. Plant Signaling and Behavior, 2021, 16, 1846928.	1.2	3
5	Excess sterol accumulation affects seed morphology and physiology in Arabidopsis thaliana. Plant Signaling and Behavior, 2021, 16, 1872217.	1.2	10
6	In vitro assembly of nuclear envelope in tobacco cultured cells. Nucleus, 2021, 12, 82-89.	0.6	0
7	Regulation and Physiological Significance of the Nuclear Shape in Plants. Frontiers in Plant Science, 2021, 12, 673905.	1.7	7
8	Galactoglucomannan structure of Arabidopsis seedâ€coat mucilage in <scp>GDP</scp> â€mannose synthesis impaired mutants. Physiologia Plantarum, 2021, 173, 1244-1252.	2.6	9
9	Arabidopsis FLYING SAUCER 2 Functions Redundantly with FLY1 to Establish Normal Seed Coat Mucilage. Plant and Cell Physiology, 2020, 61, 308-317.	1.5	9
10	Vacuolar processing enzymes in the plant life cycle. New Phytologist, 2020, 226, 21-31.	3.5	51
11	NAI2 and TSA1 Drive Differentiation of Constitutive and Inducible ER Body Formation in Brassicaceae. Plant and Cell Physiology, 2020, 61, 722-734.	1.5	8
12	Higher Stomatal Density Improves Photosynthetic Induction and Biomass Production in Arabidopsis Under Fluctuating Light. Frontiers in Plant Science, 2020, 11, 589603.	1.7	69
13	Dynamic Capture and Release of Endoplasmic Reticulum Exit Sites by Golgi Stacks in Arabidopsis. IScience, 2020, 23, 101265.	1.9	11
14	Generation of Arabidopsis lines with a red fluorescent marker for endoplasmic reticulum using a tail-anchored protein cytochrome b5-B. Plant Signaling and Behavior, 2020, 15, 1790196.	1.2	3
15	Subnuclear gene positioning through lamina association affects copper tolerance. Nature Communications, 2020, 11, 5914.	5.8	37
16	The nuclear envelope protein KAKU4 determines the migration order of the vegetative nucleus and sperm cells in pollen tubes. Journal of Experimental Botany, 2020, 71, 6273-6281.	2.4	20
17	Characterization of rhizome transcriptome and identification of a rhizomatous ER body in the clonal plant Cardamine leucantha. Scientific Reports, 2020, 10, 13291.	1.6	4
18	Excess sterols disrupt plant cellular activity by inducing stress-responsive gene expression. Journal of Plant Research, 2020, 133, 383-392.	1.2	8

#	Article	IF	CITATIONS
19	Arabidopsis ECHIDNA protein is involved in seed coloration, protein trafficking to vacuoles, and vacuolar biogenesis. Journal of Experimental Botany, 2020, 71, 3999-4009.	2.4	10
20	Endoplasmic reticulum-derived bodies enable a single-cell chemical defense in Brassicaceae plants. Communications Biology, 2020, 3, 21.	2.0	26
21	A space-saving visual screening method, <i>Glycine max</i> FAST, for generating transgenic soybean. Plant Signaling and Behavior, 2020, 15, 1722911.	1.2	1
22	HIGH STEROL ESTER 1 is a key factor in plant sterol homeostasis. Nature Plants, 2019, 5, 1154-1166.	4.7	26
23	How to Investigate the Role of the Actin-Myosin Cytoskeleton in Organ Straightening. Methods in Molecular Biology, 2019, 1924, 215-221.	0.4	Ο
24	Polar Localization of the Borate Exporter BOR1 Requires AP2-Dependent Endocytosis. Plant Physiology, 2019, 179, 1569-1580.	2.3	58
25	Leaf Endoplasmic Reticulum Bodies Identified in Arabidopsis Rosette Leaves Are Involved in Defense against Herbivory. Plant Physiology, 2019, 179, 1515-1524.	2.3	58
26	A Genotypic Comparison Reveals That the Improvement in Nitrogen Remobilization Efficiency in Oilseed Rape Leaves Is Related to Specific Patterns of Senescence-Associated Protease Activities and Phytohormones. Frontiers in Plant Science, 2019, 10, 46.	1.7	13
27	Biogenesis of leaf endoplasmic reticulum body is regulated by both jasmonate-dependent and independent pathways. Plant Signaling and Behavior, 2019, 14, 1622982.	1.2	6
28	tRNA Wobble Modification Affects Leaf Cell Development in Arabidopsis thaliana. Plant and Cell Physiology, 2019, 60, 2026-2039.	1.5	14
29	Comprehensive nuclear proteome of Arabidopsis obtained by sequential extraction. Nucleus, 2019, 10, 81-92.	0.6	28
30	Identification of Periplasmic Root-Cap Mucilage in Developing Columella Cells of Arabidopsis thaliana. Plant and Cell Physiology, 2019, 60, 1296-1303.	1.5	13
31	Sucrose Starvation Induces Microautophagy in Plant Root Cells. Frontiers in Plant Science, 2019, 10, 1604.	1.7	27
32	ANGUSTIFOLIA Regulates Actin Filament Alignment for Nuclear Positioning in Leaves. Plant Physiology, 2019, 179, 233-247.	2.3	18
33	Measurement of the Caspase-1-Like Activity of Vacuolar Processing Enzyme in Plants. Methods in Molecular Biology, 2018, 1743, 163-171.	0.4	3
34	Plant Vacuoles. Annual Review of Plant Biology, 2018, 69, 123-145.	8.6	94
35	Involvement of Adapter Protein Complex 4 in Hypersensitive Cell Death Induced by Avirulent Bacteria. Plant Physiology, 2018, 176, 1824-1834.	2.3	25
36	Membrane Dynamics and Multiple Functions of Oil Bodies in Seeds and Leaves. Plant Physiology, 2018, 176, 199-207.	2.3	73

#	Article	IF	CITATIONS
37	Tissue-specific and intracellular localization of indican synthase from Polygonum tinctorium. Plant Physiology and Biochemistry, 2018, 132, 138-144.	2.8	11
38	GREEN FLUORESCENT SEED, to Evaluate Vacuolar Trafficking in Arabidopsis Seeds. Methods in Molecular Biology, 2018, 1789, 1-7.	0.4	1
39	Endoplasmic Reticulum (ER) Membrane Proteins (LUNAPARKs) are Required for Proper Configuration of the Cortical ER Network in Plant Cells. Plant and Cell Physiology, 2018, 59, 1931-1941.	1.5	8
40	Pectin RG-I rhamnosyltransferases represent a novel plant-specific glycosyltransferase family. Nature Plants, 2018, 4, 669-676.	4.7	111
41	Specialized Vacuoles of Myrosin Cells: Chemical Defense Strategy in Brassicales Plants. Plant and Cell Physiology, 2018, 59, 1309-1316.	1.5	54
42	Stress granule formation is induced by a threshold temperature rather than a temperature difference in Arabidopsis. Journal of Cell Science, 2018, 131, .	1.2	27
43	The AP-1 Complex is Required for Proper Mucilage Formation in Arabidopsis Seeds. Plant and Cell Physiology, 2018, 59, 2331-2338.	1.5	15
44	Synaptotagmin-Associated Endoplasmic Reticulum-Plasma Membrane Contact Sites Are Localized to Immobile ER Tubules. Plant Physiology, 2018, 178, 641-653.	2.3	27
45	The Multifaceted Roles of Plant Vacuoles. Plant and Cell Physiology, 2018, 59, 1285-1287.	1.5	8
46	Nup82 functions redundantly with Nup136 in a salicylic acid-dependent defense response of Arabidopsis thaliana. Nucleus, 2017, 8, 301-311.	0.6	16
47	Inhibition of cell polarity establishment in stomatal asymmetric cell division using the chemical compound bubblin. Development (Cambridge), 2017, 144, 499-506.	1.2	11
48	HSP90 stabilizes auxin receptor TIR1 and ensures plasticity of auxin responses. Plant Signaling and Behavior, 2017, 12, e1311439.	1.2	16
49	Polar Localization of the NIP5;1 Boric Acid Channel Is Maintained by Endocytosis and Facilitates Boron Transport in Arabidopsis Roots. Plant Cell, 2017, 29, 824-842.	3.1	107
50	Isolation of Protein Storage Vacuoles and Their Membranes. Methods in Molecular Biology, 2017, 1511, 163-168.	0.4	0
51	PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 89, 204-220.	2.8	128
52	An efficient <i>Agrobacterium</i> -mediated transformation method for switchgrass genotypes using Type I callus. Plant Biotechnology, 2016, 33, 19-26.	0.5	4
53	FAMA: A Molecular Link between Stomata and Myrosin Cells. Trends in Plant Science, 2016, 21, 861-871.	4.3	24
54	The μ Subunit of <i>Arabidopsis</i> Adaptor Protein-2 Is Involved in Effector-Triggered Immunity Mediated by Membrane-Localized Resistance Proteins. Molecular Plant-Microbe Interactions, 2016, 29, 345-351.	1.4	24

#	Article	IF	CITATIONS
55	HSP90 Stabilizes Auxin-Responsive Phenotypes by Masking a Mutation in the Auxin Receptor TIR1. Plant and Cell Physiology, 2016, 57, 2245-2254.	1.5	28
56	Plant Nuclei Move to Escape Ultraviolet-Induced DNA Damage and Cell Death. Plant Physiology, 2016, 170, 678-685.	2.3	22
57	The Adaptor Complex AP-4 Regulates Vacuolar Protein Sorting at the trans-Golgi Network by Interacting with VACUOLAR SORTING RECEPTOR1. Plant Physiology, 2016, 170, 211-219.	2.3	72
58	Phosphorylation of the C Terminus of RHD3 Has a Critical Role in Homotypic ER Membrane Fusion in Arabidopsis. Plant Physiology, 2016, 170, 867-880.	2.3	31
59	Myrosin cells are differentiated directly from ground meristem cells and are developmentally independent of the vasculature in Arabidopsis leaves. Plant Signaling and Behavior, 2016, 11, e1150403.	1.2	13
60	An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems. Plant Signaling and Behavior, 2016, 11, e1010947.	1.2	21
61	Decreased Expression of a Gene Caused by a T-DNA Insertion in an Adjacent Gene in Arabidopsis. PLoS ONE, 2016, 11, e0147911.	1.1	5
62	A directionâ€selective localâ€thresholding method, <scp>DSLT</scp> , in combination with a dyeâ€based method for automated threeâ€dimensional segmentation of cells and airspaces in developing leaves. Plant Journal, 2015, 81, 357-366.	2.8	15
63	Vacuolar processing enzyme in plant programmed cell death. Frontiers in Plant Science, 2015, 6, 234.	1.7	182
64	Methyl Jasmonate Affects Morphology, Number and Activity of Endoplasmic Reticulum Bodies in Raphanus sativus Root Cells. Plant and Cell Physiology, 2015, 56, 61-72.	1.5	14
65	Retromer Contributes to Immunity-Associated Cell Death in Arabidopsis. Plant Cell, 2015, 27, 463-479.	3.1	67
66	Recent advances in understanding plant nuclear envelope proteins involved in nuclear morphology. Journal of Experimental Botany, 2015, 66, 1641-1647.	2.4	28
67	Leaf oil bodies are subcellular factories producing antifungal oxylipins. Current Opinion in Plant Biology, 2015, 25, 145-150.	3.5	40
68	BEACH-Domain Proteins Act Together in a Cascade to Mediate Vacuolar Protein Trafficking and Disease Resistance in Arabidopsis. Molecular Plant, 2015, 8, 389-398.	3.9	27
69	Regulation of organ straightening and plant posture by an actin–myosin XI cytoskeleton. Nature Plants, 2015, 1, 15031.	4.7	60
70	Oil body-mediated defense against fungi: From tissues to ecology. Plant Signaling and Behavior, 2015, 10, e989036.	1.2	27
71	Functions of plant-specific myosin XI: from intracellular motility to plant postures. Current Opinion in Plant Biology, 2015, 28, 30-38.	3.5	44
72	Effects of stomatal density and leaf water content on the ¹⁸ <scp>O</scp> enrichment of leaf water. New Phytologist, 2015, 206, 141-151.	3.5	21

#	Article	IF	CITATIONS
73	Nucleoporin 75 Is Involved in the Ethylene-Mediated Production of Phytoalexin for the Resistance of <i>Nicotiana benthamiana</i> to <i>Phytophthora infestans</i> . Molecular Plant-Microbe Interactions, 2014, 27, 1318-1330.	1.4	27
74	Functional insights of nucleocytoplasmic transport in plants. Frontiers in Plant Science, 2014, 5, 118.	1.7	50
75	ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. Frontiers in Plant Science, 2014, 5, 73.	1.7	93
76	Myrosin Cell Development Is Regulated by Endocytosis Machinery and PIN1 Polarity in Leaf Primordia of <i>Arabidopsis thaliana</i> Â. Plant Cell, 2014, 26, 4448-4461.	3.1	12
77	Microtubules Contribute to Tubule Elongation and Anchoring of Endoplasmic Reticulum, Resulting in High Network Complexity in Arabidopsis Â. Plant Physiology, 2014, 166, 1869-1876.	2.3	55
78	<scp>GFS</scp> 9/ <scp>TT</scp> 9 contributes to intracellular membrane trafficking and flavonoid accumulation in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2014, 80, 410-423.	2.8	63
79	CONTINUOUS VASCULAR RING (COV1) is a trans-Golgi Network-Localized Membrane Protein Required for Golgi Morphology and Vacuolar Protein Sorting. Plant and Cell Physiology, 2014, 55, 764-772.	1.5	32
80	The Novel Nuclear Envelope Protein KAKU4 Modulates Nuclear Morphology in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 2143-2155.	3.1	81
81	CRISPR/Cas9-Mediated Targeted Mutagenesis in the Liverwort Marchantia polymorpha L Plant and Cell Physiology, 2014, 55, 475-481.	1.5	262
82	Leaf Oil Body Functions as a Subcellular Factory for the Production of a Phytoalexin in Arabidopsis. Plant Physiology, 2014, 164, 105-118.	2.3	98
83	Arabidopsis mutants affecting oxylipin signaling in photo-oxidative stress responses. Plant Physiology and Biochemistry, 2014, 81, 90-95.	2.8	16
84	FAMA Is an Essential Component for the Differentiation of Two Distinct Cell Types, Myrosin Cells and Guard Cells, in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 4039-4052.	3.1	50
85	Seed storage albumins: biosynthesis, trafficking and structures. Functional Plant Biology, 2014, 41, 671.	1.1	37
86	Evaluation of Defective Endosomal Trafficking to the Vacuole by Monitoring Seed Storage Proteins in Arabidopsis thaliana. Methods in Molecular Biology, 2014, 1209, 131-142.	0.4	2
87	Myosin XI-i Links the Nuclear Membrane to the Cytoskeleton to Control Nuclear Movement and Shape in Arabidopsis. Current Biology, 2013, 23, 1776-1781.	1.8	193
88	The molecular architecture of the plant nuclear pore complex. Journal of Experimental Botany, 2013, 64, 823-832.	2.4	78
89	MAIGO5 Functions in Protein Export from Golgi-Associated Endoplasmic Reticulum Exit Sites in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 4658-4675.	3.1	53
90	Trafficking of Vacuolar Proteins: The Crucial Role of <i>Arabidopsis</i> Vacuolar Protein Sorting 29 in Recycling Vacuolar Sorting Receptor. Plant Cell, 2013, 24, 5058-5073.	3.1	41

#	Article	IF	CITATIONS
91	The AP-1 µ Adaptin is Required for KNOLLE Localization at the Cell Plate to Mediate Cytokinesis in Arabidopsis. Plant and Cell Physiology, 2013, 54, 838-847.	1.5	79
92	Spatiotemporal Secretion of PEROXIDASE36 Is Required for Seed Coat Mucilage Extrusion in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 1355-1367.	3.1	85
93	<scp>MAG</scp> 2 and three <scp>MAG</scp> 2â€ <scp>INTERACTING PROTEIN</scp> s form an <scp>ER</scp> â€localized complex to facilitate storage protein transport in <i>Arabidopsis thaliana</i> . Plant Journal, 2013, 76, 781-791.	2.8	34
94	Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytologist, 2013, 198, 757-764.	3.5	223
95	Identification and Dynamics of <i>Arabidopsis</i> Adaptor Protein-2 Complex and Its Involvement in Floral Organ Development. Plant Cell, 2013, 25, 2958-2969.	3.1	121
96	Stomagen/EPFL9. , 2013, , 67-70.		0
97	Plant Legumain, Asparaginyl Endopeptidase, Vacuolar Processing Enzyme. , 2013, , 2314-2320.		2
98	Identification of Two Novel Endoplasmic Reticulum Body-Specific Integral Membrane Proteins Â. Plant Physiology, 2012, 161, 108-120.	2.3	51
99	ERMO3/MVP1/GOLD36 Is Involved in a Cell Type-Specific Mechanism for Maintaining ER Morphology in Arabidopsis thaliana. PLoS ONE, 2012, 7, e49103.	1.1	22
100	Positive and negative peptide signals control stomatal density. Cellular and Molecular Life Sciences, 2011, 68, 2081-2088.	2.4	63
101	Identification and Characterization of Nuclear Pore Complex Components in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2011, 22, 4084-4097.	3.1	256
102	A non-destructive screenable marker, OsFAST, for identifying transgenic rice seeds. Plant Signaling and Behavior, 2011, 6, 1454-1456.	1.2	9
103	Involvement of the nuclear pore complex in morphology of the plant nucleus. Nucleus, 2011, 2, 168-172.	0.6	63
104	Unique Defense Strategy by the Endoplasmic Reticulum Body in Plants. Plant and Cell Physiology, 2011, 52, 2039-2049.	1.5	76
105	Myosin XI-Dependent Formation of Tubular Structures from Endoplasmic Reticulum Isolated from Tobacco Cultured BY-2 Cells Â. Plant Physiology, 2011, 156, 129-143.	2.3	46
106	Oil-Body-Membrane Proteins and Their Physiological Functions in Plants. Biological and Pharmaceutical Bulletin, 2010, 33, 360-363.	0.6	102
107	ææ‰ ©ã®ç°èfžæ»ã,'åۥã,‹éºä¼å•åæå¼2©ãºãf‡ã,¹ãf—ãfãf†ã,¢ãf¼ã,¼ã®å½¹å‰²ã,'探ã,‹. Kagaku To Seibut:	su, 20 10, 4	8,0734-736.

108 A rapid and nonâ€destructive screenable marker, FAST, for identifying transformed seeds of <i>Arabidopsis thaliana</i>. Plant Journal, 2010, 61, 519-528.

2.8 325

#	Article	IF	CITATIONS
109	Arabidopsis Qa-SNARE SYP2 proteins localized to different subcellular regions function redundantly in vacuolar protein sorting and plant development. Plant Journal, 2010, 64, 924-935.	2.8	46
110	Stomagen positively regulates stomatal density in Arabidopsis. Nature, 2010, 463, 241-244.	13.7	382
111	Ectopic Expression of an Esterase, Which is a Candidate for the Unidentified Plant Cutinase, Causes Cuticular Defects in Arabidopsis thaliana. Plant and Cell Physiology, 2010, 51, 123-131.	1.5	105
112	MAG4/Atp115 is a Golgi-Localized Tethering Factor that Mediates Efficient Anterograde Transport in Arabidopsis. Plant and Cell Physiology, 2010, 51, 1777-1787.	1.5	33
113	The cystatin M/Eâ€eathepsin L balance is essential for tissue homeostasis in epidermis, hair follicles, and cornea. FASEB Journal, 2010, 24, 3744-3755.	0.2	37
114	Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proceedings of the United States of America, 2010, 107, 6894-6899.	3.3	306
115	Two vacuole-mediated defense strategies in plants. Plant Signaling and Behavior, 2010, 5, 1568-1570.	1.2	50
116	Vacuolar Processing Enzyme plays an Essential Role in the Crystalline Structure of Glutelin in Rice Seed. Plant and Cell Physiology, 2010, 51, 38-46.	1.5	74
117	Vacuolar SNAREs Function in the Formation of the Leaf Vascular Network by Regulating Auxin Distribution. Plant and Cell Physiology, 2009, 50, 1319-1328.	1.5	52
118	A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes and Development, 2009, 23, 2496-2506.	2.7	244
119	The ER body, a new organelle in <i>Arabidopsis thaliana</i> , requires NAI2 for its formation and accumulates specific AY-glucosidases. Plant Signaling and Behavior, 2009, 4, 849-852.	1.2	23
120	GNOM-LIKE1/ERMO1 and SEC24a/ERMO2 Are Required for Maintenance of Endoplasmic Reticulum Morphology in <i>Arabidopsis thaliana</i> Â. Plant Cell, 2009, 21, 3672-3685.	3.1	92
121	An isoform of myosin XI is responsible for the translocation of endoplasmic reticulum in tobacco cultured BY-2 cells. Journal of Experimental Botany, 2009, 60, 197-212.	2.4	59
122	Dynamic Aspects of Ion Accumulation by Vesicle Traffic Under Salt Stress in Arabidopsis. Plant and Cell Physiology, 2009, 50, 2023-2033.	1.5	130
123	Quantitative Analysis of ER Body Morphology in an Arabidopsis Mutant. Plant and Cell Physiology, 2009, 50, 2015-2022.	1.5	29
124	Constitutive and Inducible ER Bodies of Arabidopsis thaliana Accumulate Distinct Î ² -Glucosidases. Plant and Cell Physiology, 2009, 50, 480-488.	1.5	68
125	A novel role for oleosins in freezing tolerance of oilseeds in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 55, 798-809.	2.8	184
126	AtMap1: a DNA microarray for genomic deletion mapping in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 56, 1058-1065.	2.8	10

#	Article	IF	CITATIONS
127	Neuroprotective Actions of PIKE-L by Inhibition of SET Proteolytic Degradation by Asparagine Endopeptidase. Molecular Cell, 2008, 29, 665-678.	4.5	116
128	Antagonistic Jacalin-Related Lectins Regulate the Size of ER Body-Type β-Glucosidase Complexes in Arabidopsis thaliana. Plant and Cell Physiology, 2008, 49, 969-980.	1.5	85
129	Arabidopsis VPS35, a Retromer Component, is Required for Vacuolar Protein Sorting and Involved in Plant Growth and Leaf Senescence. Plant and Cell Physiology, 2008, 49, 142-156.	1.5	105
130	Arabidopsis VPS35, a Retromer Component, is Required for Vacuolar Protein Sorting and Involved in Plant Growth and Leaf Senescence. Plant and Cell Physiology, 2008, 49, 678-678.	1.5	0
131	NAI2 Is an Endoplasmic Reticulum Body Component That Enables ER Body Formation in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2008, 20, 2529-2540.	3.1	62
132	An Asparaginyl Endopeptidase Mediates in Vivo Protein Backbone Cyclization. Journal of Biological Chemistry, 2007, 282, 29721-29728.	1.6	207
133	Arabidopsis KAM2/GRV2 Is Required for Proper Endosome Formation and Functions in Vacuolar Sorting and Determination of the Embryo Growth Axis. Plant Cell, 2007, 19, 320-332.	3.1	83
134	MAIGO2 Is Involved in Exit of Seed Storage Proteins from the Endoplasmic Reticulum in Arabidopsis thaliana. Plant Cell, 2007, 18, 3535-3547.	3.1	79
135	Arabidopsis Vacuolar Sorting Mutants (green fluorescent seed) Can Be Identified Efficiently by Secretion of Vacuole-Targeted Green Fluorescent Protein in Their Seeds. Plant Cell, 2007, 19, 597-609.	3.1	87
136	AtVAM3 is Required for Normal Specification of Idioblasts, Myrosin Cells. Plant and Cell Physiology, 2006, 47, 164-175.	1.5	91
137	AtVPS29, a Putative Component of a Retromer Complex, is Required for the Efficient Sorting of Seed Storage Proteins. Plant and Cell Physiology, 2006, 47, 1187-1194.	1.5	135
138	Induction of Specialized Compartments from the ER. Plant Cell Monographs, 2006, , 141-154.	0.4	2
139	A VPE family supporting various vacuolar functions in plants. Physiologia Plantarum, 2005, 123, 369-375.	2.6	86
140	Endosomal proteases facilitate the fusion of endosomes with vacuoles at the final step of the endocytotic pathway. Plant Journal, 2005, 41, 888-898.	2.8	52
141	Vacuolar processing enzyme: an executor of plant cell death. Current Opinion in Plant Biology, 2005, 8, 404-408.	3.5	223
142	Activation of an ER-body-localized Î ² -Glucosidase via a Cytosolic Binding Partner in Damaged Tissues of Arabidopsis thaliana. Plant and Cell Physiology, 2005, 46, 1140-1148.	1.5	72
143	Identification of an Allele of VAM3/SYP22 that Confers a Semi-dwarf Phenotype in Arabidopsis thaliana. Plant and Cell Physiology, 2005, 46, 1358-1365.	1.5	41
144	Vacuolar Processing Enzyme Is Essential for Mycotoxin-induced Cell Death in Arabidopsis thaliana. Journal of Biological Chemistry, 2005, 280, 32914-32920.	1.6	196

#	Article	IF	CITATIONS
145	Asparagine Endopeptidase Is Not Essential for Class II MHC Antigen Presentation but Is Required for Processing of Cathepsin L in Mice. Journal of Immunology, 2005, 174, 7066-7074.	0.4	98
146	A Vacuolar Processing Enzyme, ÎVPE, Is Involved in Seed Coat Formation at the Early Stage of Seed Development. Plant Cell, 2005, 17, 876-887.	3.1	199
147	KATAMARI1/MURUS3 Is a Novel Colgi Membrane Protein That Is Required for Endomembrane Organization in Arabidopsis. Plant Cell, 2005, 17, 1764-1776.	3.1	134
148	An ER-Localized Form of PV72, a Seed-Specific Vacuolar Sorting Receptor, Interferes the Transport of an NPIR-Containing Proteinase in Arabidopsis Leaves. Plant and Cell Physiology, 2004, 45, 9-17.	1.5	64
149	NAI1 Gene Encodes a Basic-Helix-Loop-Helix–Type Putative Transcription Factor That Regulates the Formation of an Endoplasmic Reticulum–Derived Structure, the ER Body. Plant Cell, 2004, 16, 1536-1549.	3.1	99
150	Endoplasmic reticulum-resident proteins are constitutively transported to vacuoles for degradation. Plant Journal, 2004, 39, 393-402.	2.8	53
151	The slow wound-response of ?VPE is regulated by endogenous salicylic acid in Arabidopsis. Planta, 2004, 218, 599-605.	1.6	36
152	Diversity and Formation of Endoplasmic Reticulum-Derived Compartments in Plants. Are These Compartments Specific to Plant Cells?. Plant Physiology, 2004, 136, 3435-3439.	2.3	61
153	A Plant Vacuolar Protease, VPE, Mediates Virus-Induced Hypersensitive Cell Death. Science, 2004, 305, 855-858.	6.0	579
154	A wound-inducible organelle derived from endoplasmic reticulum: a plant strategy against environmental stresses?. Current Opinion in Plant Biology, 2003, 6, 583-588.	3.5	53
155	A novel ER-derived compartment, the ER body, selectively accumulates a β-glucosidase with an ER-retention signal inArabidopsis. Plant Journal, 2003, 33, 493-502.	2.8	172
156	Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant Journal, 2003, 35, 545-555.	2.8	226
157	Biosynthetic Processing of Cathepsins and Lysosomal Degradation Are Abolished in Asparaginyl Endopeptidase-deficient Mice. Journal of Biological Chemistry, 2003, 278, 33194-33199.	1.6	181
158	The ER Body, a Novel Endoplasmic Reticulum-Derived Structure in Arabidopsis. Plant and Cell Physiology, 2003, 44, 661-666.	1.5	92
159	C-Terminal KDEL Sequence of A KDEL-Tailed Cysteine Proteinase (Sulfhydryl-Endopeptidase) Is Involved in Formation of KDEL Vesicle and in Efficient Vacuolar Transport of Sulfhydryl-Endopeptidase. Plant Physiology, 2003, 132, 1892-1900.	2.3	56
160	Vacuolar Processing Enzymes Are Essential for Proper Processing of Seed Storage Proteins in Arabidopsis thaliana. Journal of Biological Chemistry, 2003, 278, 32292-32299.	1.6	189
161	Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 16095-16100.	3.3	235
162	Behavior of Vacuoles during Microspore and Pollen Development in Arabidopsis thaliana. Plant and Cell Physiology, 2003, 44, 1192-1201.	1.5	99

#	Article	IF	CITATIONS
163	A Vacuolar Sorting Receptor PV72 on the Membrane of Vesicles that Accumulate Precursors of Seed Storage Proteins (PAC Vesicles). Plant and Cell Physiology, 2002, 43, 1086-1095.	1.5	74
164	Calcium-mediated Association of a Putative Vacuolar Sorting Receptor PV72 with a Propeptide of 2S Albumin. Journal of Biological Chemistry, 2002, 277, 8708-8715.	1.6	64
165	An Endoplasmic Reticulum-Derived Structure That Is Induced under Stress Conditions in Arabidopsis. Plant Physiology, 2002, 130, 1807-1814.	2.3	147
166	Molecular Characterization of an Arabidopsis Acyl-Coenzyme A Synthetase Localized on Glyoxysomal Membranes. Plant Physiology, 2002, 130, 2019-2026.	2.3	40
167	Activation of Arabidopsis Vacuolar Processing Enzyme by Self-Catalytic Removal of an Auto-Inhibitory Domain of the C-Terminal Propeptide. Plant and Cell Physiology, 2002, 43, 143-151.	1.5	112
168	A Novel Membrane Protein That Is Transported to Protein Storage Vacuoles via Precursor-Accumulating Vesicles. Plant Cell, 2001, 13, 2361-2372.	3.1	31
169	A Slow Maturation of a Cysteine Protease with a Granulin Domain in the Vacuoles of Senescing Arabidopsis Leaves. Plant Physiology, 2001, 127, 1626-1634.	2.3	158
170	A Proteinase-Storing Body that Prepares for Cell Death or Stresses in the Epidermal Cells of Arabidopsis. Plant and Cell Physiology, 2001, 42, 894-899.	1.5	208
171	Characterization of an Arabidopsis cDNA Encoding a Subunit of Serine Palmitoyltransferase, the Initial Enzyme in Sphingolipid Biosynthesis. Plant and Cell Physiology, 2001, 42, 1274-1281.	1.5	36
172	Characterization of Organelles in the Vacuolar-Sorting Pathway by Visualization with GFP in Tobacco BY-2 Cells. Plant and Cell Physiology, 2000, 41, 993-1001.	1.5	138
173	Multiple Functional Proteins Are Produced by Cleaving Asn-Gln Bonds of a Single Precursor by Vacuolar Processing Enzyme. Journal of Biological Chemistry, 1999, 274, 2563-2570.	1.6	98
174	Chloroplast Cpn20 forms a tetrameric structure inArabidopsis thaliana. Plant Journal, 1999, 17, 467-477.	2.8	46
175	Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant Journal, 1999, 19, 43-53.	2.8	215
176	Vacuolar processing enzyme is self-catalytically activated by sequential removal of the C-terminal and N-terminal propeptides. FEBS Letters, 1999, 447, 213-216.	1.3	101
177	Vacuolar processing enzymes in protein-storage vacuoles and lytic vacuoles. Journal of Plant Physiology, 1998, 152, 668-674.	1.6	78
178	Transport of Storage Proteins to Protein Storage Vacuoles Is Mediated by Large Precursor-Accumulating Vesicles. Plant Cell, 1998, 10, 825-836.	3.1	307
179	The AtVAM3 Encodes a Syntaxin-related Molecule Implicated in the Vacuolar Assembly in Arabidopsis thaliana. Journal of Biological Chemistry, 1997, 272, 24530-24535.	1.6	109
180	An Aspartic Endopeptidase is Involved in the Breakdown of Propeptides of Storage Proteins in Protein-Storage Vacuoles of Plants. FEBS Journal, 1997, 246, 133-141.	0.2	104

#	Article	IF	CITATIONS
181	Expression and activation of the vacuolar processing enzyme in Saccharomyces cerevisiae. Plant Journal, 1997, 12, 819-829.	2.8	51
182	Isolation and characterization of a cDNA encoding mitochondrial chaperonin 10 from Arabidopsis thaliana by functional complementation of an Escherichia coli groES mutant. Plant Journal, 1996, 10, 1119-1125.	2.8	18
183	Molecular characterization of proteins in protein-body membrane that disappear most rapidly during transformation of protein bodies into vacuoles. Plant Journal, 1995, 7, 235-243.	2.8	54
184	Homologues of a vacuolar processing enzyme that are expressed in different organs in Arabidopsis thaliana. Plant Molecular Biology, 1995, 29, 81-89.	2.0	65
185	Vacuolar Processing Enzyme Responsible for Maturation of Seed Proteins. Journal of Plant Physiology, 1995, 145, 632-640.	1.6	125
186	Immunological analysis of aconitase in pumpkin cotyledons: the absence of aconitase in glyoxysomes. Physiologia Plantarum, 1994, 90, 757-762.	2.6	28
187	Vacuolar Processing Enzyme of Soybean That Converts Proproteins to the Corresponding Mature Forms. Plant and Cell Physiology, 1994, 35, 713-718.	1.5	87
188	Amino acid sequence surrounding the retinal-binding site in retinochrome of the squid,Todarodes pacificus. FEBS Letters, 1993, 335, 94-98.	1.3	12
189	Cloning and nucleotide sequence of cDNA for rhodopsin of the squid Todarodes pacificus. FEBS Letters, 1993, 317, 5-11.	1.3	37
190	Molecular Characterization of a Vacuolar Processing Enzyme Related to a Putative Cysteine Proteinase of Schistosoma mansoni. Plant Cell, 1993, 5, 1651.	3.1	34
191	A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Letters, 1991, 294, 89-93.	1.3	229
192	Pumpkin malate synthase. Cloning and sequencing of the cDNA and Northern blot analysis. FEBS Journal, 1991, 197, 331-336.	0.2	53
193	Cloning and nucleotide sequence of cDNA for retinochrome, retinal photoisomerase from the squid retina. FEBS Letters, 1990, 271, 106-110.	1.3	39
194	Nucleotide sequence of cloned cDNA coding for pumpkin 11-S globulin beta subunit. FEBS Journal, 1988, 172, 627-632.	0.2	30
195	Effect of monensin on intracellular transport and posttranslational processing of 11 S globulin precursors in developing pumpkin cotyledons. FEBS Letters, 1988, 238, 197-200.	1.3	7
196	Proglobulin Processing Enzyme in Vacuoles Isolated from Developing Pumpkin Cotyledons. Plant Physiology, 1987, 85, 440-445.	2.3	104
197	Biosynthesis and Intracellular Transport of 11S Globulin in Developing Pumpkin Cotyledons. Plant Physiology, 1985, 77, 747-752.	2.3	56
198	Suborganellar Localization of Proteinase Catalyzing the Limited Hydrolysis of Pumpkin Globulin. Plant Physiology, 1982, 70, 699-703.	2.3	39