
David Barford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1826018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF. Cell, 2004, 116, 855-867.	28.9	2,479
2	The role of cysteine residues as redox-sensitive regulatory switches. Current Opinion in Structural Biology, 2004, 14, 679-686.	5.7	293
3	Structure of the mitotic checkpoint complex. Nature, 2012, 484, 208-213.	27.8	270
4	Atomic structure of the APC/C and its mechanism of protein ubiquitination. Nature, 2015, 522, 450-454.	27.8	208
5	Molecular architecture and mechanism of the anaphase-promoting complex. Nature, 2014, 513, 388-393.	27.8	180
6	Molecular basis of APC/C regulation by the spindle assembly checkpoint. Nature, 2016, 536, 431-436.	27.8	178
7	Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO Journal, 2003, 22, 786-796.	7.8	176
8	Structures of APC/CCdh1 with substrates identify Cdh1 and Apc10 as the D-box co-receptor. Nature, 2011, 470, 274-278.	27.8	176
9	Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature, 2016, 533, 260-264.	27.8	159
10	Structural basis for the subunit assembly of the anaphase-promoting complex. Nature, 2011, 470, 227-232.	27.8	150
11	Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	144
12	Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biology, 2017, 7, 170204.	3.6	133
13	Insights into Degron Recognition by APC/C Coactivators from the Structure of an Acm1-Cdh1 Complex. Molecular Cell, 2013, 50, 649-660.	9.7	115
14	Structure of the inner kinetochore CCAN complex assembled onto a centromeric nucleosome. Nature, 2019, 574, 278-282.	27.8	113
15	Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature, 2018, 559, 274-278.	27.8	109
16	Activation of Rho GTPases by DOCK Exchange Factors Is Mediated by a Nucleotide Sensor. Science, 2009, 325, 1398-1402.	12.6	103
17	Insights into the anaphase-promoting complex: a molecular machine that regulates mitosis. Current Opinion in Structural Biology, 2014, 29, 1-9.	5.7	99
18	An α-Helical Extension of the ELMO1 Pleckstrin Homology Domain Mediates Direct Interaction to DOCK180 and Is Critical in Rac Signaling. Molecular Biology of the Cell, 2008, 19, 4837-4851.	2.1	85

DAVID BARFORD

#	Article	IF	CITATIONS
19	Structural Analysis of the Anaphase-Promoting Complex Reveals Multiple Active Sites and Insights into Polyubiquitylation. Molecular Cell, 2005, 20, 855-866.	9.7	81
20	Multiple Factors Confer Specific Cdc42 and Rac Protein Activation by Dedicator of Cytokinesis (DOCK) Nucleotide Exchange Factors. Journal of Biological Chemistry, 2011, 286, 25341-25351.	3.4	81
21	Structure, function and mechanism of the anaphase promoting complex (APC/C). Quarterly Reviews of Biophysics, 2011, 44, 153-190.	5.7	80
22	Structural insights into anaphase-promoting complex function and mechanism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3605-3624.	4.0	73
23	The APC/C subunit Cdc16/Cut9 is a contiguous tetratricopeptide repeat superhelix with a homo-dimer interface similar to Cdc27. EMBO Journal, 2010, 29, 3733-3744.	7.8	68
24	Cryo-EM structure of a metazoan separase–securin complex at near-atomic resolution. Nature Structural and Molecular Biology, 2017, 24, 414-418.	8.2	65
25	The Structure of the 26S Proteasome Subunit Rpn2 Reveals Its PC Repeat Domain as a Closed Toroid of Two Concentric α-Helical Rings. Structure, 2012, 20, 513-521.	3.3	60
26	Structural basis of human separase regulation by securin and CDK1–cyclin B1. Nature, 2021, 596, 138-142.	27.8	51
27	Recombinant expression and reconstitution of multiprotein complexes by the USER cloning method in the insect cell-baculovirus expression system. Methods, 2016, 95, 13-25.	3.8	49
28	Implications for the Ubiquitination Reaction of the Anaphase-promoting Complex from the Crystal Structure of the Doc1/Apc10 Subunit. Journal of Molecular Biology, 2002, 316, 955-968.	4.2	48
29	Recombinant expression, reconstitution and structure of human anaphase-promoting complex (APC/C). Biochemical Journal, 2013, 449, 365-371.	3.7	48
30	Structure of the human inner kinetochore bound to a centromeric CENP-A nucleosome. Science, 2022, 376, 844-852.	12.6	40
31	Structural interconversions of the anaphase-promoting complex/cyclosome (APC/C) regulate cell cycle transitions. Current Opinion in Structural Biology, 2020, 61, 86-97.	5.7	38
32	Cyclin A2 degradation during the spindle assembly checkpoint requires multiple binding modes to the APC/C. Nature Communications, 2019, 10, 3863.	12.8	36
33	The potential of cryo-electron microscopy for structure-based drug design. Essays in Biochemistry, 2017, 61, 543-560.	4.7	34
34	Structure of the DOCK2â^'ELMO1 complex provides insights into regulation of the auto-inhibited state. Nature Communications, 2020, 11, 3464.	12.8	34
35	Molecular Structure of the N-terminal Domain of the APC/C Subunit Cdc27 Reveals a Homo-dimeric Tetratricopeptide Repeat Architecture. Journal of Molecular Biology, 2010, 397, 1316-1328.	4.2	29
36	Baculovirus expression: tackling the complexity challenge. Current Opinion in Structural Biology, 2013, 23, 357-364.	5.7	28

DAVID BARFORD

#	Article	IF	CITATIONS
37	Molecular mechanism of Mad1 kinetochore targeting by phosphorylated Bub1. EMBO Reports, 2021, 22, e52242.	4.5	26
38	Architecture of the CBF3–centromere complex of the budding yeast kinetochore. Nature Structural and Molecular Biology, 2018, 25, 1103-1110.	8.2	23
39	The Four Canonical TPR Subunits of Human APC/C Form Related Homo-Dimeric Structures and Stack in Parallel to Form a TPR Suprahelix. Journal of Molecular Biology, 2013, 425, 4236-4248.	4.2	20
40	A unique binding mode of Nek2A to the <scp>APC</scp> /C allows its ubiquitination during prometaphase. EMBO Reports, 2020, 21, e49831.	4.5	18
41	WD40 domain of Apc1 is critical for the coactivator-induced allosteric transition that stimulates APC/C catalytic activity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10547-10552.	7.1	16
42	Crystal structure of the Cenp-HIKHead-TW sub-module of the inner kinetochore CCAN complex. Nucleic Acids Research, 2020, 48, 11172-11184.	14.5	16
43	Molecular mechanisms of APC/C release from spindle assembly checkpoint inhibition by APC/C SUMOylation. Cell Reports, 2021, 34, 108929.	6.4	12
44	Understanding the structural basis for controlling chromosome division. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20130392.	3.4	10
45	Atomic-Resolution Structures of the APC/C Subunits Apc4 and the Apc5 N-Terminal Domain. Journal of Molecular Biology, 2015, 427, 3300-3315.	4.2	10
46	Data collection with a tailored X-ray beam size at 2.69â€Ã wavelength (4.6â€keV): sulfur SAD phasing of Cdc23Nterm. Acta Crystallographica Section D: Structural Biology, 2016, 72, 403-412.	2.3	10
47	The APC/C targets the Cep152–Cep63 complex at the centrosome to regulate mitotic spindle assembly. Journal of Cell Science, 2022, 135, .	2.0	7
48	Methods for Preparing Cryo-EM Grids of Large Macromolecular Complexes. Methods in Molecular Biology, 2018, 1844, 209-215.	0.9	1
49	Protein Tyrosine Phosphatases: X-Ray Crystallographic Observation of Cysteinyl-Phosphate Reaction Intermediate. Methods in Enzymology, 2002, 354, 237-251.	1.0	0
50	Editorial overview: Macromolecular machines and assemblies. Current Opinion in Structural Biology, 2016, 37, vi-viii.	5.7	0
51	A MAD way to regulate mitosis. Nature Reviews Molecular Cell Biology, 2019, 20, 135-135.	37.0	0
52	Dame Louise Napier Johnson. 26 September 1940—25 September 2012. Biographical Memoirs of Fellows of the Royal Society, 2022, 72, 221-250.	0.1	0