
Tadahiro Kitamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1825505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Forkhead Transcription Factor Foxo1 Regulates Adipocyte Differentiation. Developmental Cell, 2003, 4, 119-129.	7.0	662
2	Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nature Genetics, 2002, 32, 245-253.	21.4	597
3	FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metabolism, 2005, 2, 153-163.	16.2	521
4	The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. Journal of Clinical Investigation, 2002, 110, 1839-1847.	8.2	503
5	Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nature Medicine, 2006, 12, 534-540.	30.7	397
6	Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. Journal of Clinical Investigation, 2006, 116, 2464-72.	8.2	348
7	The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic Î ² cell growth. Journal of Clinical Investigation, 2002, 110, 1839-1847.	8.2	291
8	A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. Journal of Clinical Investigation, 2007, 117, 2477-2485.	8.2	237
9	Insulin Receptor Knockout Mice. Annual Review of Physiology, 2003, 65, 313-332.	13.1	220
10	Regulation of insulin-like growth factor–dependent myoblast differentiation by Foxo forkhead transcription factors. Journal of Cell Biology, 2003, 162, 535-541.	5.2	182
11	The role of FOXO1 in β-cell failure and type 2 diabetes mellitus. Nature Reviews Endocrinology, 2013, 9, 615-623.	9.6	173
12	Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nature Genetics, 2012, 44, 406-412.	21.4	150
13	Role of FoxO Proteins in Pancreatic .BETA. Cells. Endocrine Journal, 2007, 54, 507-515.	1.6	98
14	Preserved Pancreatic β-Cell Development and Function in Mice Lacking the Insulin Receptor-Related Receptor. Molecular and Cellular Biology, 2001, 21, 5624-5630.	2.3	97
15	Induction of Hypothalamic Sirt1 Leads to Cessation of Feeding via Agouti-Related Peptide. Endocrinology, 2010, 151, 2556-2566.	2.8	92
16	Hypothalamic SIRT1 prevents age-associated weight gain by improving leptin sensitivity in mice. Diabetologia, 2014, 57, 819-831.	6.3	80
17	SGLT1 in pancreatic α cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels. Molecular Metabolism, 2019, 19, 1-12.	6.5	75
18	Insulin Regulation of Gene Expression through the Forkhead Transcription Factor Foxo1 (Fkhr) Requires Kinases Distinct from Aktâ€. Biochemistry, 2001, 40, 11768-11776.	2.5	72

TADAHIRO KITAMURA

#	Article	IF	CITATIONS
19	Roles of FoxO1 and Sirt1 in the central regulation of food intake. Endocrine Journal, 2010, 57, 939-946.	1.6	69
20	Hepatic FoxO1 Integrates Glucose Utilization and Lipid Synthesis through Regulation of Chrebp O-Glycosylation. PLoS ONE, 2012, 7, e47231.	2.5	62
21	Accurate analytical method for human plasma glucagon levels using liquid chromatography-high resolution mass spectrometry: comparison with commercially available immunoassays. Analytical and Bioanalytical Chemistry, 2017, 409, 5911-5918.	3.7	58
22	FoxO1 as a double-edged sword in the pancreas: analysis of pancreas- and β-cell-specific FoxO1 knockout mice. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E603-E613.	3.5	56
23	Regulation of Pancreatic Juxtaductal Endocrine Cell Formation by FoxO1. Molecular and Cellular Biology, 2009, 29, 4417-4430.	2.3	53
24	Neuronal SIRT1 regulates macronutrient-based diet selection through FGF21 and oxytocin signalling in mice. Nature Communications, 2018, 9, 4604.	12.8	46
25	Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness. Frontiers in Neuroscience, 2016, 10, 502.	2.8	45
26	Overexpression of FoxO1 in the Hypothalamus and Pancreas Causes Obesity and Glucose Intolerance. Endocrinology, 2012, 153, 659-671.	2.8	41
27	Overexpression of Nmnat3 efficiently increases <scp>NAD</scp> and <scp>NGD</scp> levels and ameliorates ageâ€associated insulin resistance. Aging Cell, 2018, 17, e12798.	6.7	37
28	Mosaic analysis of insulin receptor function. Journal of Clinical Investigation, 2004, 113, 209-219.	8.2	35
29	Basal glucagon hypersecretion and response to oral glucose load in prediabetes and mild type 2 diabetes. Endocrine Journal, 2019, 66, 663-675.	1.6	33
30	ChREBP-Knockout Mice Show Sucrose Intolerance and Fructose Malabsorption. Nutrients, 2018, 10, 340.	4.1	31
31	A Mutant Allele Encoding DNA Binding–Deficient FoxO1 Differentially Regulates Hepatic Glucose and Lipid Metabolism. Diabetes, 2015, 64, 1951-1965.	0.6	28
32	FoxO1 Gain of Function in the Pancreas Causes Glucose Intolerance, Polycystic Pancreas, and Islet Hypervascularization. PLoS ONE, 2012, 7, e32249.	2.5	24
33	Sirt1 rescues the obesity induced by insulinâ€resistant constitutivelyâ€nuclear FoxO1 in POMC neurons of male mice. Obesity, 2014, 22, 2115-2119.	3.0	23
34	The PDK1-FoxO1 signaling in adipocytes controls systemic insulin sensitivity through the 5-lipoxygenase–leukotriene B ₄ axis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11674-11684.	7.1	23
35	<i>N</i> -methyl- <scp>d</scp> -aspartate receptor coagonist <scp>d</scp> -serine suppresses intake of high-preference food. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R561-R575.	1.8	17
36	Disordered branched chain amino acid catabolism in pancreatic islets is associated with postprandial hypersecretion of glucagon in diabetic mice. Journal of Nutritional Biochemistry, 2021, 97, 108811.	4.2	16

TADAHIRO KITAMURA

#	Article	IF	CITATIONS
37	Cell Autonomous Dysfunction and Insulin Resistance in Pancreatic α Cells. International Journal of Molecular Sciences, 2019, 20, 3699.	4.1	15
38	Plasma glucagon levels measured by sandwich ELISA are correlated with impaired glucose tolerance in type 2 diabetes. Endocrine Journal, 2020, 67, 903-922.	1.6	15
39	A central-acting connexin inhibitor, INI-0602, prevents high-fat diet-induced feeding pattern disturbances and obesity in mice. Molecular Brain, 2018, 11, 28.	2.6	14
40	Control of Appetite and Food Preference by NMDA Receptor and Its Co-Agonist d-Serine. International Journal of Molecular Sciences, 2016, 17, 1081.	4.1	13
41	Overexpression of insulin receptor partially improves obese and diabetic phenotypes in <i>db/db</i> mice. Endocrine Journal, 2015, 62, 787-796.	1.6	12
42	HNF1α controls glucagon secretion in pancreatic α-cells through modulation of SGLT1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165898.	3.8	10
43	Role of PDK1 in skeletal muscle hypertrophy induced by mechanical load. Scientific Reports, 2021, 11, 3447.	3.3	8
44	Miglitol prevents diet-induced obesity by stimulating brown adipose tissue and energy expenditure independent of preventing the digestion of carbohydrates. Endocrine Journal, 2013, 60, 1117-1129.	1.6	7
45	Hypothalamic Sirt1 and regulation of food intake. Diabetology International, 2012, 3, 109-112.	1.4	6
46	Anagliptin suppresses diet-induced obesity through enhancing leptin sensitivity and ameliorating hyperphagia in high-fat high-sucrose diet fed mice. Endocrine Journal, 2020, 67, 523-529.	1.6	6
47	Pseudoâ€hyperglucagonemia was observed in pancreatectomized patients when measured by glucagon sandwich enzymeâ€linked immunosorbent assay. Journal of Diabetes Investigation, 2021, 12, 286-289.	2.4	5
48	Measurement of Plasma Glucagon Levels Using Mass Spectrometry in Patients with Type 2 Diabetes on Maintenance Hemodialysis. Kidney and Blood Pressure Research, 2021, 46, 652-656.	2.0	3
49	Comprehensive efficacy of ipragliflozin on various conditioned type 2 diabetes compared with dipeptidyl peptidase-4 inhibitors and with both agents, based on a real-world multicenter trial. Diabetology International, 2021, 12, 364-378.	1.4	2
50	Study of glucagon response and its association with glycemic control and variability after administration of ipragliflozin as an adjunctive to insulin treatment in patients with type 1 diabetes (Suglat-AID). Medicine, Case Reports and Study Protocols, 2021, 2, e0135.	0.1	2
51	Recent Progress of Glucagon Research. The Journal of the Japanese Society of Internal Medicine, 2019, 108, 2177-2185.	0.0	0