José I MartÃ-n-Subero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1825314/publications.pdf

Version: 2024-02-01

164 papers 14,095 citations

20797 60 h-index 22808

172 all docs

172 docs citations

172 times ranked

19161 citing authors

g-index

#	Article	IF	CITATIONS
1	A Biologic Definition of Burkitt's Lymphoma from Transcriptional and Genomic Profiling. New England Journal of Medicine, 2006, 354, 2419-2430.	13.9	915
2	Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature, 2015, 526, 519-524.	13.7	749
3	Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Research, 2010, 20, 170-179.	2.4	569
4	Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nature Genetics, 2012, 44, 1236-1242.	9.4	525
5	Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18250-18255.	3.3	488
6	<i>TNFAIP3</i> (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. Journal of Experimental Medicine, 2009, 206, 981-989.	4.2	448
7	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	13.5	404
8	A DNA methylation fingerprint of 1628 human samples. Genome Research, 2012, 22, 407-419.	2.4	341
9	Variable frequencies of $t(11;18)(q21;q21)$ in MALT lymphomas of different sites: significant association with CagA strains of H pylori in gastric MALT lymphoma. Blood, 2003, 102, 1012-1018.	0.6	321
10	Epigenetic Silencing of the Tumor Suppressor MicroRNA <i>Hsa-miR-124a</i> Regulates CDK6 Expression and Confers a Poor Prognosis in Acute Lymphoblastic Leukemia. Cancer Research, 2009, 69, 4443-4453.	0.4	299
11	ALK-positive diffuse large B-cell lymphoma is associated with Clathrin-ALK rearrangements: report of 6 cases. Blood, 2003, 102, 2568-2573.	0.6	281
12	Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nature Genetics, 2015, 47, 746-756.	9.4	278
13	Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nature Biotechnology, 2016, 34, 726-737.	9.4	270
14	FISH Analysis for the Detection of Lymphoma-Associated Chromosomal Abnormalities in Routine Paraffin-Embedded Tissue. Journal of Molecular Diagnostics, 2006, 8, 141-151.	1.2	263
15	Recurrent involvement of the REL and BCL11Aloci in classical Hodgkin lymphoma. Blood, 2002, 99, 1474-1477.	0.6	224
16	Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood, 2007, 109, 3451-3461.	0.6	188
17	Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1161-1174.	0.9	188
18	Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome. Blood, 2005, 105, 4445-4454.	0.6	180

#	Article	IF	Citations
19	Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Research, 2014, 24, 212-226.	2.4	175
20	The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nature Medicine, 2018, 24, 868-880.	15.2	157
21	A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics, 2009, 4, 255-264.	1.3	155
22	MALT lymphoma with t(14;18)(q32;q21)/IGH-MALT1 is characterized by strong cytoplasmic MALT1 and BCL10 expression. Journal of Pathology, 2005, 205, 293-301.	2.1	149
23	Hodgkin's lymphoma cell lines are characterized by frequent aberrations on chromosomes 2p and 9p includingRELandJAK2. International Journal of Cancer, 2003, 103, 489-495.	2.3	143
24	New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling. Blood, 2009, 113, 2488-2497.	0.6	133
25	Genomic and epigenomic insights into the origin, pathogenesis, and clinical behavior of mantle cell lymphoma subtypes. Blood, 2020, 136, 1419-1432.	0.6	131
26	DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease. Brain, 2013, 136, 3018-3027.	3.7	129
27	SOX11 regulates PAX5 expression and blocks terminal B-cell differentiation in aggressive mantle cell lymphoma. Blood, 2013, 121, 2175-2185.	0.6	129
28	A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia, 2015, 29, 598-605.	3.3	129
29	Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood, 2003, 101, 706-710.	0.6	124
30	DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nature Genetics, 2015, 47, 1316-1325.	9.4	119
31	Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Research, 2015, 25, 478-487.	2.4	118
32	Aberrant epigenome in <scp>iPSC</scp> â€derived dopaminergic neurons from Parkinson's disease patients. EMBO Molecular Medicine, 2015, 7, 1529-1546.	3.3	117
33	A Comprehensive Microarray-Based DNA Methylation Study of 367 Hematological Neoplasms. PLoS ONE, 2009, 4, e6986.	1.1	115
34	Disruption of the BCL11B gene through inv(14)(q11.2q32.31) results in the expression of BCL11B-TRDC fusion transcripts and is associated with the absence of wild-type BCL11B transcripts in T-ALL. Leukemia, 2005, 19, 201-208.	3.3	113
35	Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies. Nature Communications, 2017, 8, 15424.	5.8	109
36	Molecular Cytogenetic Analysis of Chromosomal Breakpoints in the IGH, MYC, BCL6, and MALT1 Gene Loci in Primary Cutaneous B-cell Lymphomas. Journal of Investigative Dermatology, 2004, 123, 213-219.	0.3	105

#	Article	IF	Citations
37	Decoding the DNA Methylome of Mantle Cell Lymphoma in the Light of the Entire B Cell Lineage. Cancer Cell, 2016, 30, 806-821.	7.7	103
38	Detection of genomic imbalances in microdissected Hodgkin and Reed-Sternberg cells of classical Hodgkin's lymphoma by array-based comparative genomic hybridization. Haematologica, 2008, 93, 1318-1326.	1.7	97
39	Epigenetic Signatures Associated with Different Levels of Differentiation Potential in Human Stem Cells. PLoS ONE, 2009, 4, e7809.	1.1	96
40	Combined single nucleotide polymorphism-based genomic mapping and global gene expression profiling identifies novel chromosomal imbalances, mechanisms and candidate genes important in the pathogenesis of T-cell prolymphocytic leukemia with inv(14)(q11q32). Leukemia, 2007, 21, 2153-2163.	3.3	93
41	NF-κB activation impairs somatic cell reprogramming in ageing. Nature Cell Biology, 2015, 17, 1004-1013.	4.6	91
42	A chromosomal translocation in cyclin D1–negative/cyclin D2–positive mantle cell lymphoma fuses the CCND2 gene to the IGK locus. Blood, 2006, 108, 1109-1110.	0.6	86
43	Chromosomal Breakpoints Affecting Immunoglobulin Loci Are Recurrent in Hodgkin and Reed-Sternberg Cells of Classical Hodgkin Lymphoma. Cancer Research, 2006, 66, 10332-10338.	0.4	85
44	A comprehensive genetic and histopathologic analysis identifies two subgroups of B-cell malignancies carrying a $t(14;19)(q32;q13)$ or variant BCL3-translocation. Leukemia, 2007, 21, 1532-1544.	3.3	85
45	Interphase FISH assays for the detection of translocations with breakpoints in immunoglobulin light chain loci. International Journal of Cancer, 2002, 98, 470-474.	2.3	84
46	Differentiation stage of myeloma plasma cells: biological and clinical significance. Leukemia, 2017, 31, 382-392.	3.3	83
47	Multicolor-FICTION. American Journal of Pathology, 2002, 161, 413-420.	1.9	81
48	Gains of REL in primary mediastinal B-cell lymphoma coincide with nuclear accumulation of REL protein. Genes Chromosomes and Cancer, 2007, 46, 406-415.	1.5	77
49	CD95 and TRAF2 promote invasiveness of pancreatic cancer cells. FASEB Journal, 2005, 19, 1-24.	0.2	74
50	Long non-coding RNAs discriminate the stages and gene regulatory states of human humoral immune response. Nature Communications, 2019, 10, 821.	5.8	73
51	DNA Methylation Profiles and Their Relationship with Cytogenetic Status in Adult Acute Myeloid Leukemia. PLoS ONE, 2010, 5, e12197.	1.1	73
52	Aberrant Expression of ID2, a Suppressor of B-Cell-Specific Gene Expression, in Hodgkin's Lymphoma. American Journal of Pathology, 2006, 169, 655-664.	1.9	72
53	Four patients with speech delay, seizures and variable corpus callosum thickness sharing a 0.440ÂMb deletion in region 1q44 containing the HNRPU gene. European Journal of Medical Genetics, 2010, 53, 179-185.	0.7	72
54	The chromatin remodeller CHD8 is required for E2F-dependent transcription activation of S-phase genes. Nucleic Acids Research, 2014, 42, 2185-2196.	6.5	72

#	Article	IF	CITATIONS
55	Chromosomal rearrangements involving the BCL3 locus are recurrent in classical Hodgkin and peripheral T-cell lymphoma. Blood, 2006, 108, 401-403.	0.6	71
56	Interphase Cytogenetic Analysis of Lymphoma-Associated Chromosomal Breakpoints in Primary Diffuse Large B-Cell Lymphomas of the Central Nervous System. Journal of Neuropathology and Experimental Neurology, 2002, 61, 926-933.	0.9	70
57	TET2 Mutations Are Associated with Specific 5-Methylcytosine and 5-Hydroxymethylcytosine Profiles in Patients with Chronic Myelomonocytic Leukemia. PLoS ONE, 2012, 7, e31605.	1.1	70
58	A lncRNA-SWI/SNF complex crosstalk controls transcriptional activation at specific promoter regions. Nature Communications, 2020, 11, 936.	5.8	69
59	Clinical features of maternal uniparental disomy 14 in patients with an epimutation and a deletion of the imprinted <i>DLK1/GTL2</i> gene cluster. Human Mutation, 2008, 29, 1141-1146.	1.1	68
60	Dynamics of genome architecture and chromatin function during human B cell differentiation and neoplastic transformation. Nature Communications, 2021, 12, 651.	5.8	67
61	Molecular cytogenetic detection of chromosomal breakpoints in T-cell receptor gene loci. Leukemia, 2003, 17, 738-745.	3.3	66
62	Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells. Cell Reports, 2015, 13, 1059-1071.	2.9	65
63	Hunting for the 5th base: Techniques for analyzing DNA methylation. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 847-862.	1.1	62
64	High expression of several tyrosine kinases and activation of the PI3K/AKT pathway in mediastinal large B cell lymphoma reveals further similarities to Hodgkin lymphoma. Leukemia, 2007, 21, 780-787.	3.3	61
65	Gains of the proto-oncogene BCL11A and nuclear accumulation of BCL11AXL protein are frequent in primary mediastinal B-cell lymphoma. Leukemia, 2006, 20, 1880-1882.	3.3	60
66	Molecular Cytogenetic Analyses of Immunoglobulin Loci in Nodular Lymphocyte Predominant Hodgkin's Lymphoma Reveal a Recurrent IGH-BCL6 Juxtaposition. Journal of Molecular Diagnostics, 2005, 7, 352-356.	1.2	58
67	Assessment of SOX11 Expression in Routine Lymphoma Tissue Sections. American Journal of Surgical Pathology, 2014, 38, 86-93.	2.1	58
68	Genetic Predisposition to Chronic Lymphocytic Leukemia Is Mediated by a BMF Super-Enhancer Polymorphism. Cell Reports, 2016, 16, 2061-2067.	2.9	58
69	Distinct comparative genomic hybridisation profiles in gastric mucosa-associated lymphoid tissue lymphomas with and without $t(11;18)(q21;q21)$. British Journal of Haematology, 2006, 133, 35-42.	1.2	56
70	Distinct Trends of DNA Methylation Patterning in the Innate and Adaptive Immune Systems. Cell Reports, 2016, 17, 2101-2111.	2.9	54
71	Frequent and Simultaneous Epigenetic Inactivation of TP53 Pathway Genes in Acute Lymphoblastic Leukemia. PLoS ONE, 2011, 6, e17012.	1.1	52
72	The proliferative history shapes the DNA methylome of B-cell tumors and predicts clinical outcome. Nature Cancer, 2020, 1, 1066-1081.	5.7	51

#	Article	IF	Citations
73	Genomic and transcriptomic correlates of Richter transformation in chronic lymphocytic leukemia. Blood, 2021, 137, 2800-2816.	0.6	51
74	Epigenetic Inactivation of the Groucho Homologue Gene TLE1 in Hematologic Malignancies. Cancer Research, 2008, 68, 4116-4122.	0.4	50
75	Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33). Leukemia, 2009, 23, 2153-2155.	3.3	50
76	Mutations in CHD2 cause defective association with active chromatin in chronic lymphocytic leukemia. Blood, 2015, 126, 195-202.	0.6	50
77	Segmental chromosomal aberrations and centrosome amplifications: pathogenetic mechanisms in Hodgkin and Reed–Sternberg cells of classical Hodgkin's lymphoma?. Leukemia, 2003, 17, 2214-2219.	3.3	49
78	Profiling Epigenetic Alterations in Disease. Advances in Experimental Medicine and Biology, 2011, 711, 162-177.	0.8	49
79	Whole-genome sequencing of chronic lymphocytic leukaemia reveals distinct differences in the mutational landscape between IgHVmut and IgHVunmut subgroups. Leukemia, 2018, 32, 332-342.	3.3	49
80	IGLV3-21R110 identifies an aggressive biological subtype of chronic lymphocytic leukemia with intermediate epigenetics. Blood, 2021, 137, 2935-2946.	0.6	49
81	Aberrant DNA methylation profile of chronic and transformed classic Philadelphia-negative myeloproliferative neoplasms. Haematologica, 2013, 98, 1414-1420.	1.7	46
82	Transcriptional Profiling of the Nuclear Factor-l® Pathway Identifies a Subgroup of Primary Lymphoma of the Central Nervous System With Low BCL10 Expression. Journal of Neuropathology and Experimental Neurology, 2007, 66, 230-237.	0.9	44
83	Deregulation of the telomerase reverse transcriptase (TERT) gene by chromosomal translocations in B-cell malignancies. Blood, 2010, 116, 1317-1320.	0.6	44
84	Array-based DNA methylation analysis in classical Hodgkin lymphoma reveals new insights into the mechanisms underlying silencing of B cell-specific genes. Leukemia, 2012, 26, 185-188.	3.3	43
85	Partial uniparental disomy: a recurrent genetic mechanism alternative to chromosomal deletion in malignant lymphoma. Leukemia, 2006, 20, 904-905.	3.3	42
86	Epigenetic remodeling in B-cell acute lymphoblastic leukemia occurs in two tracks and employs embryonic stem cell-like signatures. Nucleic Acids Research, 2015, 43, 2590-2602.	6.5	42
87	ALK-positive diffuse large B-cell lymphoma with ALK-Clathrin fusion belongs to the spectrum of pediatric lymphomas. Leukemia, 2005, 19, 1839-1840.	3.3	41
88	Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia. Leukemia, 2012, 26, 1517-1526.	3.3	41
89	Trisomy 19 is associated with trisomy 12 and mutatedIGHVgenes in B-chronic lymphocytic leukaemia. British Journal of Haematology, 2007, 138, 217-220.	1.2	40
90	DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights. Epigenomics, 2015, 7, 1137-1153.	1.0	40

#	Article	IF	Citations
91	Identification of candidate tumor-suppressor genes in 6q27 by combined deletion mapping and electronic expression profiling in lymphoid neoplasms. Genes Chromosomes and Cancer, 2003, 37, 421-426.	1.5	39
92	Epigenetic Activation of SOX11 in Lymphoid Neoplasms by Histone Modifications. PLoS ONE, 2011, 6, e21382.	1.1	38
93	Amplification of IGH/MYC fusion in clinically aggressive IGH/BCL2-positive germinal center B-cell lymphomas. Genes Chromosomes and Cancer, 2005, 43, 414-423.	1.5	37
94	Rare occurrence of biallelic <i>CYLD</i> gene mutations in classical Hodgkin lymphoma. Genes Chromosomes and Cancer, 2010, 49, 803-809.	1.5	37
95	microRNA Expression Profiles Identify Subtypes of Mantle Cell Lymphoma with Different Clinicobiological Characteristics. Clinical Cancer Research, 2013, 19, 3121-3129.	3.2	35
96	Chromatin activation as a unifying principle underlying pathogenic mechanisms in multiple myeloma. Genome Research, 2020, 30, 1217-1227.	2.4	35
97	Identification of candidate tumour suppressor gene loci for Hodgkin and Reedâ€Sternberg cells by characterisation of homozygous deletions in classical Hodgkin lymphoma cell lines. British Journal of Haematology, 2008, 142, 916-924.	1.2	34
98	Genetic and epigenetic basis of chronic lymphocytic leukemia. Current Opinion in Hematology, 2013, 20, 362-368.	1.2	34
99	Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas. Leukemia, 2021, 35, 2002-2016.	3.3	34
100	Interphase cytogenetics of hematological neoplasms under the perspective of the novel WHO classification. Anticancer Research, 2003, 23, 1139-48.	0.5	33
101	Insight into genetic predisposition to chronic lymphocytic leukemia from integrative epigenomics. Nature Communications, 2019, 10, 3615.	5.8	32
102	DNA Hypomethylation Affects Cancer-Related Biological Functions and Genes Relevant in Neuroblastoma Pathogenesis. PLoS ONE, 2012, 7, e48401.	1.1	31
103	Cyclin D1 overexpression induces global transcriptional downregulation in lymphoid neoplasms. Journal of Clinical Investigation, 2018, 128, 4132-4147.	3.9	31
104	Array-based DNA methylation profiling of primary lymphomas of the central nervous system. BMC Cancer, 2009, 9, 455.	1.1	30
105	BCL6 alternative breakpoint region break and homozygous deletion of 17q24 in the nodular lymphocyte predominance type of Hodgkin's lymphoma–derived cell line DEV. Human Pathology, 2006, 37, 675-683.	1.1	29
106	<i>PVRL2</i> is translocated to the <i>TRA</i> @ locus in t(14;19)(q11;q13)â€positive peripheral Tâ€cell lymphomas. Genes Chromosomes and Cancer, 2007, 46, 1011-1018.	1.5	28
107	GeneChip analyses point to novel pathogenetic mechanisms in mantle cell lymphoma. British Journal of Haematology, 2009, 144, 317-331.	1.2	28
108	Characterization of complete IncRNAs transcriptome reveals the functional and clinical impact of IncRNAs in multiple myeloma. Leukemia, 2021, 35, 1438-1450.	3.3	28

#	Article	lF	Citations
109	EOMES is essential for antitumor activity of CD8+ T cells in chronic lymphocytic leukemia. Leukemia, 2021, 35, 3152-3162.	3.3	26
110	The pattern of genomic gains in salivary gland MALT lymphomas. Haematologica, 2007, 92, 921-927.	1.7	25
111	Cereblon enhancer methylation and IMiD resistance in multiple myeloma. Blood, 2021, 138, 1721-1726.	0.6	25
112	BCL2 and BCL3 are recurrent translocation partners of the IGH locus. Cancer Genetics and Cytogenetics, 2008, 186, 110-114.	1.0	24
113	A familial disorder of altered DNA-methylation. Journal of Medical Genetics, 2014, 51, 407-412.	1.5	24
114	Insight into origins, mechanisms, and utility of DNA methylation in B-cell malignancies. Blood, 2018, 132, 999-1006.	0.6	24
115	Integrated epigenomic and transcriptomic analysis reveals <i>TP63</i> as a novel player in clinically aggressive chronic lymphocytic leukemia. International Journal of Cancer, 2019, 144, 2695-2706.	2.3	24
116	Expression pattern of intracellular leukocyte-associated proteins in primary mediastinal B cell lymphoma. Leukemia, 2005, 19, 856-861.	3.3	23
117	The hydroxymethylome of multiple myeloma identifies FAM72D as a 1q21 marker linked to proliferation. Haematologica, 2020, 105, 774-783.	1.7	23
118	Charting the dynamic epigenome during B-cell development. Seminars in Cancer Biology, 2018, 51, 139-148.	4.3	22
119	Centrosome abnormalities in ALK-positive anaplastic large-cell lymphoma. Leukemia, 2004, 18, 1910-1911.	3.3	21
120	Recurrent loss, but lack of mutations, of the SMARCB1 tumor suppressor gene in T-cell prolymphocytic leukemia with TCL1A–TCRAD juxtaposition. Cancer Genetics and Cytogenetics, 2009, 192, 44-47.	1.0	21
121	Epigenomic profiling in polycythaemia vera and essential thrombocythaemia shows low levels of aberrant DNA methylation. Journal of Clinical Pathology, 2011, 64, 1010-1013.	1.0	20
122	DNA methylation profiling of pediatric Bâ€cell lymphoblastic leukemia with <i>KMT2A</i> rearrangement identifies hypomethylation at enhancer sites. Pediatric Blood and Cancer, 2017, 64, e26251.	0.8	20
123	Pulmonary mucosa-associated lymphoid tissue lymphoma with strong nuclear B-cell CLL/lymphoma 10 (BCL10) expression and novel translocation t(1;2)(p22;p12)/immunoglobulin chain-BCL10. Journal of Clinical Pathology, 2007, 60, 727-728.	1.0	19
124	LMO2-negative Expression Predicts the Presence of MYC Translocations in Aggressive B-Cell Lymphomas. American Journal of Surgical Pathology, 2017, 41, 877-886.	2.1	19
125	Impaired CpG Demethylation in Common Variable Immunodeficiency Associates With B Cell Phenotype and Proliferation Rate. Frontiers in Immunology, 2019, 10, 878.	2.2	19
126	Comparative genomic hybridization and amplotyping by arbitrarily primed PCR in stage A B-CLL. Cancer Genetics and Cytogenetics, 2001, 130, 8-13.	1.0	18

#	Article	IF	Citations
127	Detection of secondary genetic aberrations in follicle center cell derived lymphomas: assessment of the reliability of comparative genomic hybridization and standard chromosome analysis. Leukemia, 2001, 15, 177-183.	3.3	17
128	Identification of recurrent chromosomal breakpoints in multiple myeloma with complex karyotypes by combined G-banding, spectral karyotyping, and fluorescence in situ hybridization analyses. Cancer Genetics and Cytogenetics, 2006, 169, 143-149.	1.0	17
129	Combining arrayâ€based approaches for the identification of candidate tumor suppressor loci in mature lymphoid neoplasms. Apmis, 2007, 115, 1107-1134.	0.9	17
130	Recurrent loss of the Y chromosome and homozygous deletions within the pseudoautosomal region 1: association with male predominance in mantle cell lymphoma. Haematologica, 2008, 93, 949-950.	1.7	17
131	ETS1 encoding a transcription factor involved in B-cell differentiation is recurrently deleted and down-regulated in classical Hodgkin's lymphoma. Haematologica, 2012, 97, 1612-1614.	1.7	17
132	Epigenomic profiling of myelofibrosis reveals widespread DNA methylation changes in enhancer elements and $\langle i \rangle$ ZFP36L1 $\langle i \rangle$ as a potential tumor suppressor gene that is epigenetically regulated. Haematologica, 2019, 104, 1572-1579.	1.7	16
133	Characterization of homozygous deletions in laryngeal squamous cell carcinoma cell lines. Cancer Genetics and Cytogenetics, 2008, 184, 38-43.	1.0	15
134	Genomeâ€wide methylation analyses identify a subset of mantle cell lymphoma with a high number of methylated CpGs and aggressive clinicopathological features. International Journal of Cancer, 2013, 133, 2852-2863.	2.3	15
135	Lowâ€grade and highâ€grade mammary carcinomas in WAPâ€T transgenic mice are independent entities distinguished by Met expression. International Journal of Cancer, 2013, 132, 1300-1310.	2.3	15
136	DNA methylation profiles in chronic lymphocytic leukemia patients treated with chemoimmunotherapy. Clinical Epigenetics, 2019, 11, 177.	1.8	15
137	Chromosomal abnormalities clustering in multiple myeloma reveals cytogenetic subgroups with nonrandom acquisition of chromosomal changes. Leukemia, 2004, 18, 654-657.	3.3	14
138	Cytogenetic and molecular characterization of a patient with simultaneous B-cell chronic lymphocytic leukemia and peripheral T-cell lymphoma. American Journal of Hematology, 2001, 68, 276-279.	2.0	13
139	Amplification of ERBB2, RARA, and TOP2A genes in a myelodysplastic syndrome transforming to acute myeloid leukemia. Cancer Genetics and Cytogenetics, 2001, 127, 174-176.	1.0	11
140	Microarrayâ€based DNA methylation analysis of imprinted loci in a patient with transient neonatal diabetes mellitus. American Journal of Medical Genetics, Part A, 2008, 146A, 3227-3229.	0.7	11
141	DNA methylation profiling of hepatosplenic T-cell lymphoma. Haematologica, 2019, 104, e104-e107.	1.7	11
142	Chronic lymphocytic leukemias with trisomy 12 show a distinct DNA methylation profile linked to altered chromatin activation. Haematologica, 2020, 105, 2864-2867.	1.7	11
143	Gene expression derived from alternative promoters improves prognostic stratification in multiple myeloma. Leukemia, 2021, 35, 3012-3016.	3.3	11
144	Androgen Receptor Mutations Are Associated with Altered Epigenomic Programming as Evidenced by & lt;i>HOXA5 Methylation. Sexual Development, 2011, 5, 70-76.	1.1	10

#	Article	IF	CITATIONS
145	Expression of the transcribed ultraconserved region 70 and the related long nonâ€coding ⟨scp⟩RNA AC⟨ scp⟩092652.2â€202 has prognostic value in Chronic Lymphocytic Leukaemia. British Journal of Haematology, 2019, 184, 1045-1050.	1.2	10
146	Comprehensive characterization of the epigenetic landscape in Multiple Myeloma. Theranostics, 2022, 12, 1715-1729.	4.6	10
147	Expression of <scp>ELF</scp> 1, a lymphoid <scp>ETS</scp> domainâ€containing transcription factor, is recurrently lost in classical Hodgkin lymphoma. British Journal of Haematology, 2019, 185, 79-88.	1.2	9
148	Towards precision medicine in lymphoid malignancies. Journal of Internal Medicine, 2022, 292, 221-242.	2.7	9
149	How epigenomics brings phenotype into being. Pediatric Endocrinology Reviews, 2011, 9 Suppl 1, 506-10.	1.2	9
150	Towards defining the lymphoma methylome. Leukemia, 2006, 20, 1658-1660.	3.3	8
151	DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights. Genomics Data, 2015, 5, 360-363.	1.3	8
152	Breakpoint characterization of the $der(19)t(11;19)(q13;p13)$ in the ovarian cancer cell line SKOV $\hat{a}\in 3$. Genes Chromosomes and Cancer, 2013, 52, 512-522.	1.5	6
153	In silico deconvolution and purification of cancer epigenomes. Oncoscience, 2017, 4, 25-26.	0.9	6
154	Interphase cytogenetic characterization of aberrations in the long arm of chromosome 1 in B-cell lymphoid malignancies. Cancer Genetics and Cytogenetics, 2003, 144, 83-84.	1.0	5
155	Extramedullary multiple myeloma patient derived orthotopic xenograft with high disturbed genome: combined exhaustive molecular and therapeutic studies. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	5
156	Insights into the mechanisms underlying aberrant SOX11 oncogene expression in mantle cell lymphoma. Leukemia, 2022, 36, 583-587.	3.3	5
157	Insertion (22;9)(q11;q34q21) in a patient with chronic myeloid leukemia characterized by fluorescence in situ hybridization. Cancer Genetics and Cytogenetics, 2001, 125, 167-170.	1.0	3
158	Cytogenetic and molecular characterization of simultaneous chronic and acute myelocytic leukemia. Cancer Genetics and Cytogenetics, 2003, 142, 80-82.	1.0	3
159	Simultaneous translocations of FGFR3/MMSET and CCND1 into two different IGH alleles in multiple myeloma: lack of concurrent activation of both proto-oncogenes. Cancer Genetics and Cytogenetics, 2007, 175, 65.e1-65.e5.	1.0	3
160	Interphase FISH for the detection of breakpoints in IG loci and chromosomal changes with adverse prognostic impact in multiple myeloma with normal karyotypes. Cancer Genetics and Cytogenetics, 2006, 167, 183-185.	1.0	2
161	PanCancer analysis of somatic mutations in repetitive regions reveals recurrent mutations in snRNA U2. Npj Genomic Medicine, 2022, 7, 19.	1.7	2
162	The DNA Methylomes of Cancer. , 2016, , 183-207.		1

#	Article	IF	CITATIONS
163	<i>TNFAIP3</i> (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. Journal of Cell Biology, 2009, 185, i4-i4.	2.3	1
164	Landscape and clinical significance of long noncoding <scp>RNAs</scp> involved in multiple myeloma expressed fusion transcripts. American Journal of Hematology, 2022, 97, .	2.0	1