
Sibylle Neuhoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1825166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Considerations for Physiologically Based Modeling in Liver Disease: From Nonalcoholic Fatty Liver (NAFL) to Nonalcoholic Steatohepatitis (NASH). Clinical Pharmacology and Therapeutics, 2023, 113, 275-297.	4.7	11
2	In Vitro to In Vivo Extrapolation Linked to Physiologically Based Pharmacokinetic Models for Assessing the Brain Drug Disposition. AAPS Journal, 2022, 24, 28.	4.4	8
3	Guide to development of compound files for <scp>PBPK</scp> modeling in the Simcyp populationâ€based simulator. CPT: Pharmacometrics and Systems Pharmacology, 2022, 11, 805-821.	2.5	21
4	Regulation of Drug Transport Proteins—From Mechanisms to Clinical Impact: A White Paper on Behalf of the International Transporter Consortium. Clinical Pharmacology and Therapeutics, 2022, 112, 461-484.	4.7	26
5	Prediction of CYPâ€mediated DDIs involving inhibition: Approaches to address the requirements for system qualification of the Simcyp Simulator. CPT: Pharmacometrics and Systems Pharmacology, 2022, 11, 822-832.	2.5	14
6	Clinical Implications of Altered Drug Transporter Abundance/Function and <scp>PBPK</scp> Modeling in Specific Populations: An <scp>ITC</scp> Perspective. Clinical Pharmacology and Therapeutics, 2022, 112, 501-526.	4.7	21
7	Clinical Relevance of Hepatic and Renal Pâ€gp/ <scp>BCRP</scp> Inhibition of Drugs: An International Transporter Consortium Perspective. Clinical Pharmacology and Therapeutics, 2022, 112, 573-592.	4.7	15
8	Transporter Regulation in Critical Protective Barriers: Focus on Brain and Placenta. Pharmaceutics, 2022, 14, 1376.	4.5	9
9	Intestinal Pâ€gp and Putative Hepatic OATP1B Induction: International Transporter Consortium Perspective on Drug Development Implications. Clinical Pharmacology and Therapeutics, 2021, 109, 55-64.	4.7	38
10	Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interaction Potential of Vemurafenib Using R-Value and Physiologically-Based Pharmacokinetic Models. Journal of Pharmaceutical Sciences, 2021, 110, 314-324.	3.3	11
11	Physiologicallyâ€Based Pharmacokinetic Model of Morphine and Morphineâ€3â€Glucuronide in Nonalcoholic Steatohepatitis. Clinical Pharmacology and Therapeutics, 2021, 109, 676-687.	4.7	17
12	Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS Journal, 2021, 23, 59.	4.4	12
13	Food constituent– and herb–drug interactions in oncology: Influence of quantitative modelling on Drug labelling. British Journal of Clinical Pharmacology, 2021, 87, 3988-4000.	2.4	9
14	Application of proteomic data in the translation of in vitro observations to associated clinical outcomes. Drug Discovery Today: Technologies, 2021, 39, 13-22.	4.0	5
15	Unraveling pleiotropic effects of rifampicin by using physiologically based pharmacokinetic modeling: Assessing the induction magnitude of Pâ€glycoprotein–cytochrome P450 3A4 dual substrates. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 1485-1496.	2.5	12
16	Physiologicallyâ€Based Pharmacokinetic Models for Evaluating Membrane Transporter MediatedÂDrug–Drug Interactions: Current Capabilities, Case Studies, Future Opportunities, and Recommendations. Clinical Pharmacology and Therapeutics, 2020, 107, 1082-1115.	4.7	88
17	Mass spectrometryâ€based abundance atlas of ABC transporters in human liver, gut, kidney, brain and skin. FEBS Letters, 2020, 594, 4134-4150.	2.8	21
18	A Laboratory-Specific Scaling Factor to Predict the In Vivo Human Clearance of Aldehyde Oxidase Substrates. Drug Metabolism and Disposition, 2020, 48, 1231-1238.	3.3	10

SIBYLLE NEUHOFF

#	Article	IF	CITATIONS
19	Acamprosate Is a Substrate of the Human Organic Anion Transporter (OAT) 1 without OAT3 Inhibitory Properties: Implications for Renal Acamprosate Secretion and Drug–Drug Interactions. Pharmaceutics, 2020, 12, 390.	4.5	9
20	New approach methodologies (NAMs) for human-relevant biokinetics predictions. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 607-622.	1.5	31
21	Use of Physiologically Based Pharmacokinetic Modeling to Evaluate the Effect of Chronic Kidney Disease on the Disposition of Hepatic <scp>CYP</scp> 2C8 and <scp>OATP</scp> 1B Drug Substrates. Clinical Pharmacology and Therapeutics, 2019, 105, 719-729.	4.7	55
22	The Permeation of Acamprosate Is Predominantly Caused by Paracellular Diffusion across Caco-2 Cell Monolayers: A Paracellular Modeling Approach. Molecular Pharmaceutics, 2019, 16, 4636-4650.	4.6	9
23	Assessing Potential Drug–Drug Interactions Between Dabigatran Etexilate and a Pâ€Glycoprotein Inhibitor in Renal Impairment Populations Using Physiologically Based Pharmacokinetic Modeling. CPT: Pharmacometrics and Systems Pharmacology, 2019, 8, 118-126.	2.5	17
24	Preincubation With Everolimus and Sirolimus Reduces Organic Anion-Transporting Polypeptide (OATP)1B1- and 1B3-Mediated Transport Independently of mTOR Kinase Inhibition: Implication in Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interactions. Journal of Pharmaceutical Sciences, 2019, 108, 3443-3456.	3.3	19
25	The Regional-Specific Relative and Absolute Expression of Gut Transporters in Adult Caucasians: A Meta-Analysis. Drug Metabolism and Disposition, 2019, 47, 854-864.	3.3	34
26	Proteomic Quantification of Human Blood–Brain Barrier SLC and ABC Transporters in Healthy Individuals and Dementia Patients. Molecular Pharmaceutics, 2019, 16, 1220-1233.	4.6	85
27	Was <scp>4β</scp> â€hydroxycholesterol ever going to be a useful marker of <scp>CYP3A4</scp> activity?. British Journal of Clinical Pharmacology, 2018, 84, 1620-1621.	2.4	14
28	Risk–Benefit Assessment of Ethinylestradiol Using a Physiologically Based Pharmacokinetic Modeling Approach. Clinical Pharmacology and Therapeutics, 2018, 104, 1229-1239.	4.7	8
29	PBPK Model of Morphine Incorporating Developmental Changes in Hepatic OCT1 and UGT2B7 Proteins to Explain the Variability in Clearances in Neonates and Small Infants. CPT: Pharmacometrics and Systems Pharmacology, 2018, 7, 464-473.	2.5	33
30	Pretreatment With Rifampicin and Tyrosine Kinase Inhibitor DasatinibÂPotentiates the Inhibitory Effects Toward OATP1B1- and OATP1B3-Mediated Transport. Journal of Pharmaceutical Sciences, 2017, 106, 2123-2135.	3.3	44
31	Abundance of Hepatic Transporters in Caucasians: A Meta-Analysis. Drug Metabolism and Disposition, 2016, 44, 1550-1561.	3.3	55
32	More Power to OATP1B1: An Evaluation of Sample Size in Pharmacogenetic Studies Using a Rosuvastatin PBPK Model for Intestinal, Hepatic, and Renal Transporterâ€Mediated Clearances. Journal of Clinical Pharmacology, 2016, 56, S132-42.	2.0	20
33	Development of a permeability-limited model of the human brain and cerebrospinal fluid (CSF) to integrate known physiological and biological knowledge: Estimating time varying CSF drug concentrations and their variability using inÂvitro data. Drug Metabolism and Pharmacokinetics, 2016, 31, 224-233.	2.2	54
34	In Vitro-In Vivo Extrapolation Scaling Factors for Intestinal P-glycoprotein and Breast Cancer Resistance Protein: Part II. The Impact of Cross-Laboratory Variations of Intestinal Transporter Relative Expression Factors on Predicted Drug Disposition. Drug Metabolism and Disposition, 2016, 44, 476-480.	3.3	33
35	In Vitro-In Vivo Extrapolation Scaling Factors for Intestinal P-Glycoprotein and Breast Cancer Resistance Protein: Part I: A Cross-Laboratory Comparison of Transporter-Protein Abundances and Relative Expression Factors in Human Intestine and Caco-2 Cells. Drug Metabolism and Disposition, 2016. 44. 297-307.	3.3	50
36	Lost in Centrifugation: Accounting for Transporter Protein Losses in Quantitative Targeted Absolute Proteomics. Drug Metabolism and Disposition, 2014, 42, 1766-1772.	3.3	35

SIBYLLE NEUHOFF

#	Article	IF	CITATIONS
37	Variability in P-Glycoprotein Inhibitory Potency (IC ₅₀) Using Various in Vitro Experimental Systems: Implications for Universal Digoxin Drug-Drug Interaction Risk Assessment Decision Criteria. Drug Metabolism and Disposition, 2013, 41, 1347-1366.	3.3	136
38	Application of Receiver Operating Characteristic Analysis to Refine the Prediction of Potential Digoxin Drug Interactions. Drug Metabolism and Disposition, 2013, 41, 1367-1374.	3.3	41
39	Application of permeability-limited physiologically-based pharmacokinetic models: Part l–digoxin pharmacokinetics incorporating P-glycoprotein-mediated efflux. Journal of Pharmaceutical Sciences, 2013, 102, 3145-3160.	3.3	53
40	Application of permeabilityâ€limited physiologically-based pharmacokinetic models: Part II-prediction of pâ€glycoprotein mediated drug–drug interactions with digoxin. Journal of Pharmaceutical Sciences, 2013, 102, 3161-3173.	3.3	50
41	Accounting for Transporters in Renal Clearance: Towards a Mechanistic Kidney Model (Mech KiM). AAPS Advances in the Pharmaceutical Sciences Series, 2013, , 155-177.	0.6	45
42	Population-Based Mechanistic Prediction of Oral Drug Absorption. AAPS Journal, 2009, 11, 225-237.	4.4	365
43	Impact of Extracellular Protein Binding on Passive and Active Drug Transport Across Caco-2 Cells. Pharmaceutical Research, 2006, 23, 350-359.	3.5	54
44	Caco-2 permeability of weakly basic drugs predicted with the Double-Sink PAMPA method. European Journal of Pharmaceutical Sciences, 2005, 24, 333-349.	4.0	203
45	pH-Dependent passive and active transport of acidic drugs across Caco-2 cell monolayers. European Journal of Pharmaceutical Sciences, 2005, 25, 211-220.	4.0	127