
Dennis L Kasper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1824852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell, 2005, 122, 107-118.	28.9	2,427
2	Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial "pan-genome". Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13950-13955.	7.1	2,161
3	A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 2008, 453, 620-625.	27.8	2,094
4	Microbial Exposure During Early Life Has Persistent Effects on Natural Killer T Cell Function. Science, 2012, 336, 489-493.	12.6	1,411
5	How colonization by microbiota in early life shapes the immune system. Science, 2016, 352, 539-544.	12.6	1,378
6	Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota. Cell, 2012, 149, 1578-1593.	28.9	1,050
7	Individual intestinal symbionts induce a distinct population of RORγ ⁺ regulatory T cells. Science, 2015, 349, 993-997.	12.6	707
8	Correlation of Maternal Antibody Deficiency with Susceptibility to Neonatal Group B Streptococcal Infection. New England Journal of Medicine, 1976, 294, 753-756.	27.0	676
9	Microbial bile acid metabolites modulate gut RORγ+Âregulatory T cell homeostasis. Nature, 2020, 577, 410-415.	27.8	568
10	Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell, 2017, 168, 928-943.e11.	28.9	554
11	Identification of a Universal Group B Streptococcus Vaccine by Multiple Genome Screen. Science, 2005, 309, 148-150.	12.6	497
12	Sphingolipids from a Symbiotic Microbe Regulate Homeostasis of Host Intestinal Natural Killer T Cells. Cell, 2014, 156, 123-133.	28.9	491
13	A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nature Biomedical Engineering, 2019, 3, 520-531.	22.5	487
14	Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V <i>Streptococcus agalactiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12391-12396.	7.1	447
15	A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nature Medicine, 2016, 22, 421-426.	30.7	421
16	Central Nervous System Demyelinating Disease Protection by the Human Commensal <i>Bacteroides fragilis</i> Depends on Polysaccharide A Expression. Journal of Immunology, 2010, 185, 4101-4108.	0.8	340
17	Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8141-E8150.	7.1	331
18	Polysaccharide Processing and Presentation by the MHCII Pathway. Cell, 2004, 117, 677-687.	28.9	313

#	Article	IF	CITATIONS
19	Immunization of Pregnant Women with a Polysaccharide Vaccine of Group B Streptococcus. New England Journal of Medicine, 1988, 319, 1180-1185.	27.0	312
20	Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature, 2001, 414, 555-558.	27.8	311
21	The love–hate relationship between bacterial polysaccharides and the host immune system. Nature Reviews Immunology, 2006, 6, 849-858.	22.7	297
22	A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nature Medicine, 2011, 17, 1602-1609.	30.7	295
23	A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. Journal of Experimental Medicine, 2006, 203, 2853-2863.	8.5	245
24	Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Frontiers in Bioscience - Landmark, 2010, 15, 25.	3.0	241
25	Plasmacytoid Dendritic Cells Mediate Anti-inflammatory Responses to a Gut Commensal Molecule via Both Innate and Adaptive Mechanisms. Cell Host and Microbe, 2014, 15, 413-423.	11.0	239
26	Moving beyond microbiome-wide associations to causal microbe identification. Nature, 2017, 552, 244-247.	27.8	220
27	CD4+ T Cells Mediate Abscess Formation in Intra-abdominal Sepsis by an IL-17-Dependent Mechanism. Journal of Immunology, 2003, 170, 1958-1963.	0.8	216
28	Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species. Glycobiology, 2011, 21, 401-409.	2.5	207
29	How Bacterial Carbohydrates Influence the Adaptive Immune System. Annual Review of Immunology, 2010, 28, 107-130.	21.8	203
30	Structural and Genetic Diversity of Group B Streptococcus Capsular Polysaccharides. Infection and Immunity, 2005, 73, 3096-3103.	2.2	197
31	Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. FEMS Microbiology Reviews, 2014, 38, 660-697.	8.6	191
32	Microbial Colonization Drives Expansion of IL-1 Receptor 1-Expressing and IL-17-Producing γ/δT Cells. Cell Host and Microbe, 2010, 7, 140-150.	11.0	190
33	A commensal symbiotic factor derived from <i>Bacteroides fragilis</i> promotes human CD39 ⁺ Foxp3 ⁺ T cells and T _{reg} function. Gut Microbes, 2015, 6, 234-242.	9.8	188
34	Bacterial Glycans: Key Mediators of Diverse Host Immune Responses. Cell, 2006, 126, 847-850.	28.9	183
35	An Intestinal Organ Culture System Uncovers a Role for the Nervous System in Microbe-Immune Crosstalk. Cell, 2017, 168, 1135-1148.e12.	28.9	182
36	In vivo imaging and tracking of host–microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nature Medicine, 2015, 21, 1091-1100.	30.7	178

#	Article	IF	CITATIONS
37	Safety and Immunogenicity of Capsular Polysaccharide–Tetanus Toxoid Conjugate Vaccines for Group B Streptococcal Types Ia and Ib. Journal of Infectious Diseases, 1999, 179, 142-150.	4.0	173
38	An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nature Communications, 2014, 5, 4432.	12.8	167
39	Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell, 2020, 183, 1312-1324.e10.	28.9	157
40	A Mechanism for Neurodegeneration Induced by Group B Streptococci through Activation of the TLR2/MyD88 Pathway in Microglia. Journal of Immunology, 2006, 177, 583-592.	0.8	151
41	Transcriptional and proteomic insights into the host response in fatal COVID-19 cases. Proceedings of the United States of America, 2020, 117, 28336-28343.	7.1	149
42	Chemical and Biological Characterization of the Lipopolysaccharide of Bacteroides fragilis Subspecies fragilis. Journal of Infectious Diseases, 1976, 134, 59-66.	4.0	142
43	Functional Analysis in Type Ia Group B Streptococcusof a Cluster of Genes Involved in Extracellular Polysaccharide Production by Diverse Species of Streptococci. Journal of Biological Chemistry, 2001, 276, 139-146.	3.4	140
44	Zwitterionic Polysaccharides Stimulate T Cells by MHC Class II-Dependent Interactions. Journal of Immunology, 2002, 169, 6149-6153.	0.8	140
45	Novel Engagement of CD14 and Multiple Toll-Like Receptors by Group B Streptococci. Journal of Immunology, 2001, 167, 7069-7076.	0.8	135
46	Cellular Activation, Phagocytosis, and Bactericidal Activity Against Group B Streptococcus Involve Parallel Myeloid Differentiation Factor 88-Dependent and Independent Signaling Pathways. Journal of Immunology, 2002, 169, 3970-3977.	0.8	130
47	Isolation and Chemical Characterization of a Capsular Polysaccharide Antigen Shared by Clinical Isolates of <i>Enterococcus faecalis</i> and Vancomycin-Resistant <i>Enterococcus faecium</i> . Infection and Immunity, 1999, 67, 1213-1219.	2.2	127
48	Role of Lipoteichoic Acid in the Phagocyte Response to Group B <i>Streptococcus</i> . Journal of Immunology, 2005, 174, 6449-6455.	0.8	125
49	The <i>yin yang</i> of bacterial polysaccharides: lessons learned from <i>B. fragilis</i> PSA. Immunological Reviews, 2012, 245, 13-26.	6.0	124
50	Regulation of Virulence by a Two-Component System in Group B Streptococcus. Journal of Bacteriology, 2005, 187, 1105-1113.	2.2	122
51	TLR-Independent Type I Interferon Induction in Response to an Extracellular Bacterial PathogenÂvia Intracellular Recognition of Its DNA. Cell Host and Microbe, 2008, 4, 543-554.	11.0	118
52	Isolation and Identification of Encapsulated Strains of Bacteroides fragilis. Journal of Infectious Diseases, 1977, 136, 75-81.	4.0	111
53	An Immunologic Mode of Multigenerational Transmission Governs a Gut Treg Setpoint. Cell, 2020, 181, 1276-1290.e13.	28.9	110
54	Characterization of Gonococcal Antigens Responsible for Induction of Bactericidal Antibody in Disseminated Infection. Journal of Clinical Investigation, 1977, 60, 1149-1158.	8.2	108

#	Article	IF	CITATIONS
55	Bactericidal antibody and susceptibility to otitis media caused by nontypable strains of Haemophilus influenzae. Journal of Pediatrics, 1980, 97, 364-369.	1.8	107
56	NMR and Molecular Dynamics Studies of the Conformational Epitope of the Type III Group BStreptococcusCapsular Polysaccharide and Derivativesâ€. Biochemistry, 1997, 36, 3278-3292.	2.5	107
57	A commensal bacterial product elicits and modulates migratory capacity of CD39 ⁺ CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes, 2014, 5, 552-561.	9.8	104
58	T Cells Activated by Zwitterionic Molecules Prevent Abscesses Induced by Pathogenic Bacteria. Journal of Biological Chemistry, 2000, 275, 6733-6740.	3.4	101
59	Regulation of surface architecture by symbiotic bacteria mediates host colonization. Proceedings of the United States of America, 2008, 105, 3951-3956.	7.1	101
60	Structural determination and serology of the native polysaccharide antigen of type-III group B Streptococcus. Canadian Journal of Biochemistry, 1980, 58, 112-120.	1.4	98
61	IFN-γ Regulated Chemokine Production Determines the Outcome of <i>Staphylococcus aureus</i> Infection. Journal of Immunology, 2008, 181, 1323-1332.	0.8	97
62	Coming of age: carbohydrates and immunity. European Journal of Immunology, 2005, 35, 352-356.	2.9	94
63	Purification and Immunochemical Characterization of the Outer Membrane Complex of Bacteroides melaninogenicus Subspecies asaccharolyticus. Journal of Infectious Diseases, 1977, 135, 787-799.	4.0	93
64	Evidence for T Cell-dependent Immunity to Bacteroides fragilis in an Intraabdominal Abscess Model. Journal of Clinical Investigation, 1982, 69, 9-16.	8.2	93
65	Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature, 2020, 577, 543-548.	27.8	90
66	Cognate Stimulatory B-Cell–T-Cell Interactions Are Critical for T-Cell Help Recruited by Glycoconjugate Vaccines. Infection and Immunity, 1999, 67, 6375-6384.	2.2	90
67	Deciphering the tête-Ã-tête between the microbiota and the immune system. Journal of Clinical Investigation, 2014, 124, 4197-203.	8.2	89
68	In Whose Best Interest? Breaching the Academic–Industrial Wall. New England Journal of Medicine, 2000, 343, 1646-1649.	27.0	88
69	Symbionts exploit complex signaling to educate the immune system. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26157-26166.	7.1	88
70	CD4+ T Cells Regulate Surgical and Postinfectious Adhesion Formation. Journal of Experimental Medicine, 2002, 195, 1471-1478.	8.5	87
71	Characterization of the Linkage between the Type III Capsular Polysaccharide and the Bacterial Cell Wall of Group BStreptococcus. Journal of Biological Chemistry, 2000, 275, 7497-7504.	3.4	86
72	Polysaccharide Biosynthesis Locus Required for Virulence of Bacteroides fragilis. Infection and Immunity, 2001, 69, 4342-4350.	2.2	86

#	Article	IF	CITATIONS
73	Carbohydrates and T cells: A sweet twosome. Seminars in Immunology, 2013, 25, 146-151.	5.6	86
74	Illuminating vital surface molecules of symbionts in health and disease. Nature Microbiology, 2017, 2, 17099.	13.3	86
75	Characterization of Serum Resistance of Neisseria gonorrhoeae that Disseminate. Journal of Clinical Investigation, 1982, 70, 157-167.	8.2	85
76	Small Molecule Control of Virulence Gene Expression in Francisella tularensis. PLoS Pathogens, 2009, 5, e1000641.	4.7	84
77	Zwitterionic capsular polysaccharides: the new MHCII-dependent antigens. Cellular Microbiology, 2005, 7, 1398-1403.	2.1	82
78	Structural and Immunochemical Characterization of the Type VIII Group B Streptococcus Capsular Polysaccharide. Journal of Biological Chemistry, 1996, 271, 8786-8790.	3.4	80
79	Impaired Antibody Response to Group B Streptococcal Type III Capsular Polysaccharide in C3- and Complement Receptor 2-Deficient Mice. Journal of Immunology, 2003, 170, 84-90.	0.8	79
80	Polysaccharide structure dictates mechanism of adaptive immune response to glycoconjugate vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 193-198.	7.1	77
81	Microbial carbohydrate depolymerization by antigen-presenting cells: Deamination prior to presentation by the MHCII pathway. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5183-5188.	7.1	73
82	Enzymic synthesis of 5-acetamido-9-azido-3,5,9-trideoxyglycerogalacto-2-nonulosonic acid, a 9-azido-9-deoxy derivative of N-acetylneuraminic acid. Biochemical and Biophysical Research Communications, 1980, 96, 1282-1289.	2.1	68
83	A Defined O-Antigen Polysaccharide Mutant of <i>Francisella tularensis</i> Live Vaccine Strain Has Attenuated Virulence while Retaining Its Protective Capacity. Infection and Immunity, 2007, 75, 2591-2602.	2.2	67
84	Structural Properties of Group B Streptococcal Type III Polysaccharide Conjugate Vaccines That Influence Immunogenicity and Efficacy. Infection and Immunity, 1998, 66, 2186-2192.	2.2	66
85	Antibody-independent Classical Pathway-mediated Opsonophagocytosis of Type Ia, Group B Streptococcus. Journal of Clinical Investigation, 1982, 69, 394-404.	8.2	65
86	The natural history of group B streptococcal colonization in the pregnant woman and her offspring. American Journal of Obstetrics and Gynecology, 1980, 137, 39-42.	1.3	63
87	Ozonolytic depolymerization of polysaccharides in aqueous solution. Carbohydrate Research, 1999, 319, 141-147.	2.3	63
88	Type I <i>Streptococcus pneumoniae</i> carbohydrate utilizes a nitric oxide and MHC IIâ€dependent pathway for antigen presentation. Immunology, 2009, 127, 73-82.	4.4	63
89	Influence of Preimmunization Antibody Levels on the Specificity of the Immune Response to Related Polysaccharide Antigens. New England Journal of Medicine, 1980, 303, 173-178.	27.0	59
90	The Starting Lineup: Key Microbial Players in Intestinal Immunity and Homeostasis. Frontiers in Microbiology, 2011, 2, 148.	3.5	59

#	Article	IF	CITATIONS
91	Resident commensals shaping immunity. Current Opinion in Immunology, 2013, 25, 450-455.	5.5	59
92	Characteristics of carbohydrate antigen binding to the presentation protein HLA-DR. Glycobiology, 2008, 18, 707-718.	2.5	57
93	Immunologic Memory Induced by a Glycoconjugate Vaccine in a Murine Adoptive Lymphocyte Transfer Model. Infection and Immunity, 1998, 66, 2026-2032.	2.2	57
94	Host immunomodulatory lipids created by symbionts from dietary amino acids. Nature, 2021, 600, 302-307.	27.8	56
95	The Changing Spectrum of Group B Streptococcal Disease. New England Journal of Medicine, 1993, 328, 1843-1844.	27.0	55
96	Effect of Molecular Size on the Ability of Zwitterionic Polysaccharides to Stimulate Cellular Immunity. Journal of Immunology, 2000, 164, 719-724.	0.8	55
97	The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL-1β-induced inflammation in human fetal enterocytes via toll receptors 2 and 4. PLoS ONE, 2017, 12, e0172738.	2.5	55
98	Structural elucidation of the novel type VII group B Streptococcus capsular polysaccharide by high resolution NMR spectroscopy. Carbohydrate Research, 1995, 277, 1-9.	2.3	53
99	Zwitterionic Polysaccharides Stimulate T Cells with No Preferential Vβ Usage and Promote Anergy, Resulting in Protection against Experimental Abscess Formation. Journal of Immunology, 2004, 172, 1483-1490.	0.8	53
100	Systemic toll-like receptor ligands modify B-cell responses in human inflammatory bowel disease. Inflammatory Bowel Diseases, 2011, 17, 298-307.	1.9	50
101	Alpha C Protein as a Carrier for Type III Capsular Polysaccharide and as a Protective Protein in Group B Streptococcal Vaccines. Infection and Immunity, 1999, 67, 2491-2496.	2.2	50
102	Analysis of a Capsular Polysaccharide Biosynthesis Locus of <i>Bacteroides fragilis</i> . Infection and Immunity, 1999, 67, 3525-3532.	2.2	49
103	Bacteroides fragilis NCTC9343 Produces at Least Three Distinct Capsular Polysaccharides: Cloning, Characterization, and Reassignment of Polysaccharide B and C Biosynthesis Loci. Infection and Immunity, 2000, 68, 6176-6181.	2.2	48
104	Finding a needle in a haystack: <i>Bacteroides fragilis</i> polysaccharide A as the archetypical symbiosis factor. Annals of the New York Academy of Sciences, 2018, 1417, 116-129.	3.8	47
105	Biological chemistry of immunomodulation by zwitterionic polysaccharides. Carbohydrate Research, 2003, 338, 2531-2538.	2.3	46
106	Modulation of surgical fibrosis by microbial zwitterionic polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16753-16758.	7.1	42
107	Glycoconjugate vaccines to prevent group B streptococcal infections. Expert Opinion on Biological Therapy, 2003, 3, 975-984.	3.1	40
108	Group A Streptococcus Epidemiology and Vaccine Implications. Clinical Infectious Diseases, 2007, 45, 863-865.	5.8	39

#	Article	IF	CITATIONS
109	Bacteroides fragilis–Stimulated Interleukin-10 Contains Expanding Disease. Journal of Infectious Diseases, 2011, 204, 363-371.	4.0	39
110	Type III Group B Streptococcal Polysaccharide Induces Antibodies That Cross-React with Streptococcus pneumoniae Type 14. Infection and Immunity, 2002, 70, 1724-1738.	2.2	38
111	Case 25-2005. New England Journal of Medicine, 2005, 353, 713-722.	27.0	38
112	Isolation of carbohydrate-specific CD4+ T cell clones from mice after stimulation by two model glycoconjugate vaccines. Nature Protocols, 2012, 7, 2180-2192.	12.0	38
113	Synthesis and Preclinical Evaluation of Glycoconjugate Vaccines against Group BStreptococcusTypes VI and VIII. Journal of Infectious Diseases, 1999, 180, 892-895.	4.0	37
114	Rational chemical design of the carbohydrate in a glycoconjugate vaccine enhances IgM-to-IgG switching. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5903-5908.	7.1	37
115	Antibody-Independent Activation of C1 by Type Ia Group B Streptococci. Journal of Infectious Diseases, 1982, 146, 665-672.	4.0	36
116	4,8-Anhydro-N-acetylneuraminic acid. Isolation from edible bird's nest and structure determination. FEBS Journal, 1987, 162, 445-450.	0.2	36
117	Response to Type III Polysaccharide in Women Whose Infants Have Had Invasive Group B Streptococcal Infection. New England Journal of Medicine, 1990, 322, 1857-1860.	27.0	36
118	A Phase 2, Randomized, Control Trial of Group B Streptococcus (GBS) Type III Capsular Polysaccharide-tetanus Toxoid (GBS III-TT) Vaccine to Prevent Vaginal Colonization With GBS III. Clinical Infectious Diseases, 2019, 68, 2079-2086.	5.8	36
119	Group B streptococcal colonization and antibody status in lower socioeconomic parturient women. American Journal of Obstetrics and Gynecology, 1979, 133, 171-173.	1.3	35
120	Symbiotic commensal bacteria direct maturation of the host immune system. Current Opinion in Gastroenterology, 2008, 24, 720-724.	2.3	35
121	Cellular and humoral immunity are synergistic in protection against types A and B Francisella tularensis. Vaccine, 2009, 27, 597-605.	3.8	35
122	Characterization of the O-antigen Polymerase (Wzy) of Francisella tularensis. Journal of Biological Chemistry, 2010, 285, 27839-27849.	3.4	35
123	The atypical lipopolysaccharide ofFrancisella. Carbohydrate Research, 2013, 378, 79-83.	2.3	35
124	Effect of B7-2 and CD40 Signals from Activated Antigen-Presenting Cells on the Ability of Zwitterionic Polysaccharides To Induce T-Cell Stimulation. Infection and Immunity, 2005, 73, 2184-2189.	2.2	34
125	Role of T cells in abscess formation. Current Opinion in Microbiology, 2002, 5, 92-96.	5.1	33
126	Structure of an antigenic teichoic acid shared by clinical isolates of Enterococcus faecalis and vancomycin-resistant Enterococcus faecium. Carbohydrate Research, 1999, 316, 155-160.	2.3	32

#	Article	IF	CITATIONS
127	Structure of the capsular polysaccharide antigen of type IV group B Streptococcus. Canadian Journal of Chemistry, 1989, 67, 877-882.	1.1	31
128	Genetic Modification of the O-Polysaccharide of Francisella tularensis Results in an Avirulent Live Attenuated Vaccine. Journal of Infectious Diseases, 2012, 205, 1056-1065.	4.0	31
129	Glycoconjugate vaccine using a genetically modified O antigen induces protective antibodies to <i>Francisella tularensis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7062-7070.	7.1	28
130	Harnessing Colon Chip Technology to Identify Commensal Bacteria That Promote Host Tolerance to Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 638014.	3.9	28
131	Structure of the Type VI Group BStreptococcusCapsular Polysaccharide Determined by High Resolution NMR Spectroscopy. Journal of Carbohydrate Chemistry, 1994, 13, 1071-1078.	1.1	27
132	Immunochemical and Biological Characterization of Three Capsular Polysaccharides from a Single Bacteroides fragilisStrain. Infection and Immunity, 2001, 69, 2339-2344.	2.2	27
133	Deficiency of mannose-binding lectin greatly increases antibody response in a mouse model of vaccination. Clinical Immunology, 2009, 130, 264-271.	3.2	27
134	Regulation of T cells by gut commensal microbiota. Current Opinion in Rheumatology, 2011, 23, 372-376.	4.3	25
135	Kdo Hydrolase Is Required for Francisella tularensis Virulence and Evasion of TLR2-Mediated Innate Immunity. MBio, 2013, 4, e00638-12.	4.1	25
136	Isolation of a C (Ibc) protein from group B Streptococcus which elicits mouse protective antibody. Microbial Pathogenesis, 1986, 1, 191-204.	2.9	24
137	Interactions between the intestinal microbiota and innate lymphoid cells. Gut Microbes, 2014, 5, 129-140.	9.8	22
138	Characterization of Bacteroides fragilis Strains Based on Antigen-Specific Immunofluorescence. Journal of Infectious Diseases, 1983, 147, 780-780.	4.0	20
139	Orientations of the <i>Bacteroides fragilis</i> Capsular Polysaccharide Biosynthesis Locus Promoters during Symbiosis and Infection. Journal of Bacteriology, 2010, 192, 5832-5836.	2.2	20
140	3-Deoxy-d-manno-octulosonic Acid (Kdo) Hydrolase Identified in Francisella tularensis, Helicobacter pylori, and Legionella pneumophila. Journal of Biological Chemistry, 2010, 285, 34330-34336.	3.4	19
141	Relevance of Commensal Microbiota in the Treatment and Prevention of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2013, 19, 2478-2489.	1.9	19
142	Exploring the Gut-Brain Axis for the Control of CNS Inflammatory Demyelination: Immunomodulation by Bacteroides fragilis' Polysaccharide A. Frontiers in Immunology, 2021, 12, 662807.	4.8	19
143	Surface Structures of Group B Streptococcus Important in Human Immunity. Microbiology Spectrum, 2019, 7, .	3.0	18
144	Testosterone: More Than Having the Guts to Win the Tour de France. Immunity, 2013, 39, 208-210.	14.3	17

#	Article	IF	CITATIONS
145	Building conventions for unconventional lymphocytes. Immunological Reviews, 2017, 279, 52-62.	6.0	17
146	Interstrain Variation of the Polysaccharide B Biosynthesis Locus of Bacteroides fragilis : Characterization of the Region from Strain 638R. Journal of Bacteriology, 1999, 181, 6192-6196.	2.2	16
147	Role of Murine Intestinal Interleukin-1 Receptor 1-Expressing Lymphoid Tissue Inducer-Like Cells in Salmonella Infection. PLoS ONE, 2013, 8, e65405.	2.5	16
148	Antibody to type III group B Streptococcus in the rhesus monkey. American Journal of Obstetrics and Gynecology, 1983, 146, 958-962.	1.3	15
149	Effect of Subinhibitory Doses of Clindamycin on the Virulence of Bacteroides fragilis: Role of Lipopolysaccharide. Journal of Infectious Diseases, 1986, 154, 40-46.	4.0	15
150	A Novel Approach to N-Acetyl-neuraminic Acid-Containing Oligosaccharides. Synthesis of a Glycosyl Donor Derivative of α- <u>N</u> -Acetyl-D-neuraminyl- (2-6) -D-galactose. Journal of Carbohydrate Chemistry, 1987, 6, 41-55.	1.1	15
151	Measurement of Human Antibodies to Type III Group B <i>Streptococcus</i> . Infection and Immunity, 1999, 67, 4303-4305.	2.2	14
152	Novel Tools for Modulating Immune Responses in the Host—Polysaccharides from the Capsule of Commensal Bacteria. Advances in Immunology, 2010, 106, 61-91.	2.2	13
153	HARRISON'S PRINCIPLES OF INTERNAL MEDICINE, 13TH EDITION. Shock, 1996, 5, 78.	2.1	9
154	Wild gut microbiota protects from disease. Cell Research, 2018, 28, 135-136.	12.0	8
155	Sensitivity of Francisella tularensis to ultrapure water and deoxycholate: Implications for bacterial intracellular growth assay in macrophages. Journal of Microbiological Methods, 2011, 85, 230-232.	1.6	7
156	Veggies and Intact Grains a Day Keep the Pathogens Away. Cell, 2016, 167, 1161-1162.	28.9	7
157	Case 4-1986. New England Journal of Medicine, 1986, 314, 302-309.	27.0	6
158	Structural elucidation of the capsular polysaccharide of Bacteroides fragilis strain 23745M1. Carbohydrate Research, 1995, 275, 333-341.	2.3	6
159	Early Interactions of Murine Macrophages with Francisella tularensis Map to Mouse Chromosome 19. MBio, 2016, 7, e02243.	4.1	6
160	Type I interferon signaling restrains IL-10R+ colonic macrophages and dendritic cells and leads to more severe Salmonella colitis. PLoS ONE, 2017, 12, e0188600.	2.5	6
161	Bacteroides fragilis NCTC9343 Produces at Least Three Distinct Capsular Polysaccharides: Cloning, Characterization, and Reassignment of Polysaccharide B and C Biosynthesis Loci. Infection and Immunity, 2000, 68, 6176-6181.	2.2	6
162	Group B Streptococcus Type III Glycoconjugate Vaccines Trends in Glycoscience and Glycotechnology, 1992, 4, 269-278.	0.1	5

#	Article	IF	CITATIONS
163	Traffic control at the "Gut-GALT crossroads― Cell Research, 2013, 23, 590-591.	12.0	5
164	Fiber Sets up the Battleground for Intestinal Prevotella. Cell Host and Microbe, 2020, 28, 776-777.	11.0	5
165	Genetic Diversity of the Capsular Polysaccharide C Biosynthesis Region of Bacteroides fragilis. Infection and Immunity, 2000, 68, 6182-6188.	2.2	4
166	Anchors away: contribution of a glycolipid anchor to bacterial invasion of host cells. Journal of Clinical Investigation, 2005, 115, 2325-2327.	8.2	3
167	Lack of stimulation of isohemagglutinin antibodies byimmunization with group B streptococcal (Type) Tj ETQq1	1	4 ṟǥBT /Over
168	Immunity to group B Streptococcus. Clinical Immunology Newsletter, 1986, 7, 27-31.	0.1	1
169	A Paradigm for Commensalism: The Role of a Specific Microbial Polysaccharide in Health and Disease. Nestle Nutrition Workshop Series Paediatric Programme, 2009, 64, 1-10.	1.5	1
170	When Lab Mice Go Wild, Fungi Are in Play. Cell Host and Microbe, 2020, 27, 687-688.	11.0	1
171	Structure and Conformation of the Capsular Polysaccharides of Group B Streptococcus. ACS Symposium Series, 1981, , 161-172.	0.5	0
172	Edward H. Kass, 1917–1990. Annals of Epidemiology, 1990, 1, 93-94.	1.9	0
173	Harrison's Online Updates. Hospital Practice (1995), 2001, 36, 30-30.	1.0	0
174	Characterization of the APC presenting a microbial polysaccharide to regulatory T cells. Inflammatory Bowel Diseases, 2011, 17, S11-S12.	1.9	0
175	Induction of T helper 1â€like regulatory are induced by Capsular polysaccharide A (PSA) of Bacteroides fragilis through IFNâ€r and Foxp3. FASEB Journal, 2008, 22, 501-501.	0.5	0
176	Gut Commensal Immunomodulatory Factors: Identification and Structureâ€Function Studies. FASEB Journal, 2015, 29, LB170.	0.5	0
177	Sphingolipids of Commensals Modulate Host Immunity through Regulation of iNKT Cells. FASEB Journal, 2015, 29, 235.3.	0.5	Ο

11