Edward M Marcotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1824676/publications.pdf

Version: 2024-02-01

204 papers

28,223 citations

73 h-index 158 g-index

270 all docs

270 docs citations

times ranked

270

43210 citing authors

#	Article	IF	CITATIONS
1	HumanNet v3: an improved database of human gene networks for disease research. Nucleic Acids Research, 2022, 50, D632-D639.	6.5	53
2	Protein Sequencing, One Molecule at a Time. Annual Review of Biophysics, 2022, 51, 181-200.	4.5	18
3	Understudied proteins: opportunities and challenges for functional proteomics. Nature Methods, 2022, 19, 774-779.	9.0	83
4	An open invitation to the Understudied Proteins Initiative. Nature Biotechnology, 2022, 40, 815-817.	9.4	25
5	ARVCF catenin controls force production during vertebrate convergent extension. Developmental Cell, 2022, 57, 1119-1131.e5.	3.1	8
6	Evaluating the Effect of Dye–Dye Interactions of Xanthene-Based Fluorophores in the Fluorosequencing of Peptides. Bioconjugate Chemistry, 2022, 33, 1156-1165.	1.8	3
7	Functional expression of opioid receptors and other human GPCRs in yeast engineered to produce human sterols. Nature Communications, 2022, 13, .	5.8	13
8	Simplified geometric representations of protein structures identify complementary interaction interfaces. Proteins: Structure, Function and Bioinformatics, 2021, 89, 348-360.	1.5	7
9	Systematic Identification of Protein Phosphorylation-Mediated Interactions. Journal of Proteome Research, 2021, 20, 1359-1370.	1.8	14
10	Co-fractionation/mass spectrometry to identify protein complexes. STAR Protocols, 2021, 2, 100370.	0.5	12
11	Improving integrative 3D modeling into low―to medium―esolution electron microscopy structures with evolutionary couplings. Protein Science, 2021, 30, 1006-1021.	3.1	2
12	hu.MAP 2.0: integration of over 15,000 proteomic experiments builds a global compendium of human multiprotein assemblies. Molecular Systems Biology, 2021, 17, e10016.	3.2	82
13	The emerging landscape of single-molecule protein sequencing technologies. Nature Methods, 2021, 18, 604-617.	9.0	198
14	Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast. Genetics, 2021, 219, .	1.2	6
15	Twinfilin1 controls lamellipodial protrusive activity and actin turnover during vertebrate gastrulation. Journal of Cell Science, 2021, 134, .	1.2	6
16	Spatiotemporal transcriptional dynamics of the cycling mouse oviduct. Developmental Biology, 2021, 476, 240-248.	0.9	6
17	Photoredox-Catalyzed Decarboxylative <i>C</i> -Terminal Differentiation for Bulk- and Single-Molecule Proteomics. ACS Chemical Biology, 2021, 16, 2595-2603.	1.6	8
18	Super.Complex: A supervised machine learning pipeline for molecular complex detection in protein-interaction networks. PLoS ONE, 2021, 16, e0262056.	1.1	10

#	Article	IF	CITATIONS
19	Studies of Surface Preparation for the Fluorosequencing of Peptides. Langmuir, 2021, 37, 14856-14865.	1.6	3
20	Bringing Microscopy-By-Sequencing into View. Trends in Biotechnology, 2020, 38, 154-162.	4.9	10
21	Separating distinct structures of multiple macromolecular assemblies from cryo-EM projections. Journal of Structural Biology, 2020, 209, 107416.	1.3	19
22	Synthesis of Carboxy ATTO 647N Using Redox Cycling for Xanthone Access. Organic Letters, 2020, 22, 381-385.	2.4	5
23	Systematic Humanization of the Yeast Cytoskeleton Discerns Functionally Replaceable from Divergent Human Genes. Genetics, 2020, 215, 1153-1169.	1.2	14
24	A systematic, label-free method for identifying RNA-associated proteins in vivo provides insights into vertebrate ciliary beating machinery. Developmental Biology, 2020, 467, 108-117.	0.9	22
25	Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics. ACS Chemical Biology, 2020, 15, 1401-1407.	1.6	11
26	Humanization of yeast genes with multiple human orthologs reveals functional divergence between paralogs. PLoS Biology, 2020, 18, e3000627.	2.6	37
27	Next-Generation TLC: A Quantitative Platform for Parallel Spotting and Imaging. Journal of Organic Chemistry, 2020, 85, 9447-9453.	1.7	7
28	Abundances of transcripts, proteins, and metabolites in the cell cycle of budding yeast reveal coordinate control of lipid metabolism. Molecular Biology of the Cell, 2020, 31, 1069-1084.	0.9	30
29	A Pan-plant Protein Complex Map Reveals Deep Conservation and Novel Assemblies. Cell, 2020, 181, 460-474.e14.	13.5	133
30	Structural Biology in the Multi-Omics Era. Journal of Chemical Information and Modeling, 2020, 60, 2424-2429.	2.5	13
31	Functional partitioning of a liquid-like organelle during assembly of axonemal dyneins. ELife, 2020, 9, .	2.8	37
32	Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes. Cell Reports, 2019, 29, 1351-1368.e5.	2.9	53
33	Ancestral reconstruction of protein interaction networks. PLoS Computational Biology, 2019, 15, e1007396.	1.5	12
34	Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity. Genes and Development, 2019, 33, 1751-1774.	2.7	89
35	The Many Nuanced Evolutionary Consequences of Duplicated Genes. Molecular Biology and Evolution, 2019, 36, 304-314.	3 . 5	26
36	HumanNet v2: human gene networks for disease research. Nucleic Acids Research, 2019, 47, D573-D580.	6. 5	161

#	Article	IF	CITATIONS
37	Protein localization screening <i>in vivo</i> reveals novel regulators of multiciliated cell development and function. Journal of Cell Science, 2018, 131, .	1.2	29
38	Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature, 2018, 553, 337-341.	13.7	69
39	A highly parallel strategy for storage of digital information in living cells. BMC Biotechnology, 2018, 18, 64.	1.7	10
40	Withdrawn as Duplicate: The many nuanced evolutionary consequences of duplicated genes. Molecular Biology and Evolution, 2018, 35, e1.	3.5	2
41	Single-step Precision Genome Editing in Yeast Using CRISPR-Cas9. Bio-protocol, 2018, 8, .	0.2	45
42	Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nature Biotechnology, 2018, 36, 1076-1082.	9.4	151
43	Photography Coupled with Self-Propagating Chemical Cascades: Differentiation and Quantitation of G- and V-Nerve Agent Mimics via Chromaticity. ACS Central Science, 2018, 4, 854-861.	5.3	36
44	Classification of Single Particles from Human Cell Extract Reveals Distinct Structures. Cell Reports, 2018, 24, 259-268.e3.	2.9	32
45	A liquid-like organelle at the root of motile ciliopathy. ELife, 2018, 7, .	2.8	55
46	Murine Cytomegalovirus Deubiquitinase Regulates Viral Chemokine Levels To Control Inflammation and Pathogenesis. MBio, 2017, 8, .	1.8	21
47	Comprehensive <i>de Novo</i> Peptide Sequencing from MS/MS Pairs Generated through Complementary Collision Induced Dissociation and 351 nm Ultraviolet Photodissociation. Analytical Chemistry, 2017, 89, 3747-3753.	3.2	13
48	Predictability of Genetic Interactions from Functional Gene Modules. G3: Genes, Genomes, Genetics, 2017, 7, 617-624.	0.8	8
49	WheatNet: a Genome-Scale Functional Network for Hexaploid Bread Wheat, Triticum aestivum. Molecular Plant, 2017, 10, 1133-1136.	3.9	29
50	The E. coli molecular phenotype under different growth conditions. Scientific Reports, 2017, 7, 45303.	1.6	46
51	GWAB: a web server for the network-based boosting of human genome-wide association data. Nucleic Acids Research, 2017, 45, W154-W161.	6.5	29
52	Solution-phase and solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing. New Journal of Chemistry, 2017, 41, 462-469.	1.4	19
53	Integration of over 9,000 mass spectrometry experiments builds a global map of human proteinÂcomplexes. Molecular Systems Biology, 2017, 13, 932.	3.2	177
54	Systems-wide Studies Uncover Commander, a Multiprotein Complex Essential to Human Development. Cell Systems, 2017, 4, 483-494.	2.9	44

#	Article	IF	CITATIONS
55	Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nature Microbiology, 2017, 2, 1493-1499.	5.9	100
56	Large-scale analysis of post-translational modifications in E. coli under glucose-limiting conditions. BMC Genomics, 2017, 18, 301.	1.2	55
57	Identifying direct contacts between protein complex subunits from their conditional dependence in proteomics datasets. PLoS Computational Biology, 2017, 13, e1005625.	1.5	22
58	Systematic bacterialization of yeast genes identifies a near-universally swappable pathway. ELife, 2017, 6, .	2.8	32
59	Temporal stability and molecular persistence of the bone marrow plasma cell antibody repertoire. Nature Communications, 2016, 7, 13838.	5.8	11
60	Sperm is epigenetically programmed to regulate gene transcription in embryos. Genome Research, 2016, 26, 1034-1046.	2.4	109
61	Proteome-wide dataset supporting the study of ancient metazoan macromolecular complexes. Data in Brief, 2016, 6, 715-721.	0.5	5
62	Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer. Bioinformatics, 2016, 32, 1373-1379.	1.8	11
63	MouseNet v2: a database of gene networks for studying the laboratory mouse and eight other model vertebrates. Nucleic Acids Research, 2016, 44, D848-D854.	6.5	40
64	The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nature Genetics, 2016, 48, 648-656.	9.4	119
65	Towards Consensus Gene Ages. Genome Biology and Evolution, 2016, 8, 1812-1823.	1.1	63
66	Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nature Medicine, 2016, 22, 1456-1464.	15.2	271
67	Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 2016, 538, 336-343.	13.7	849
68	Efforts to make and apply humanized yeast. Briefings in Functional Genomics, 2016, 15, 155-163.	1.3	84
69	UVnovo: A <i>de Novo</i> Sequencing Algorithm Using Single Series of Fragment Ions via Chromophore Tagging and 351 nm Ultraviolet Photodissociation Mass Spectrometry. Analytical Chemistry, 2016, 88, 3990-3997.	3.2	26
70	Systematic comparison of variant calling pipelines using gold standard personal exome variants. Scientific Reports, 2015, 5, 17875.	1.6	284
71	Modes of Interaction between Individuals Dominate the Topologies of Real World Networks. PLoS ONE, 2015, 10, e0121248.	1.1	4
72	Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science, 2015, 348, 921-925.	6.0	361

#	Article	IF	CITATIONS
73	Long-term neural and physiological phenotyping of a single human. Nature Communications, 2015, 6, 8885.	5.8	353
74	Intrinsic Antimicrobial Resistance Determinants in the Superbug Pseudomonas aeruginosa. MBio, 2015, 6, e01603-15.	1.8	79
75	A Theoretical Justification for Single Molecule Peptide Sequencing. PLoS Computational Biology, 2015, 11, e1004080.	1.5	60
76	The DEAH-box Helicase Dhr1 Dissociates U3 from the Pre-rRNA to Promote Formation of the Central Pseudoknot. PLoS Biology, 2015, 13, e1002083.	2.6	70
77	Applications of comparative evolution to human disease genetics. Current Opinion in Genetics and Development, 2015, 35, 16-24.	1.5	7
78	Panorama of ancient metazoan macromolecular complexes. Nature, 2015, 525, 339-344.	13.7	478
79	Controlled Measurement and Comparative Analysis of Cellular Components in E. coli Reveals Broad Regulatory Changes in Response to Glucose Starvation. PLoS Computational Biology, 2015, 11, e1004400.	1.5	42
80	Identification and characterization of the constituent human serum antibodies elicited by vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2259-2264.	3.3	238
81	MORPHIN: a web tool for human disease research by projecting model organism biology onto a human integrated gene network. Nucleic Acids Research, 2014, 42, W147-W153.	6.5	16
82	Bacteriophages use an expanded genetic code on evolutionary paths to higher fitness. Nature Chemical Biology, 2014, 10, 178-180.	3.9	44
83	A proteomic survey of widespread protein aggregation in yeast. Molecular BioSystems, 2014, 10, 851.	2.9	53
84	Lanthanide nano-drums: a new class of molecular nanoparticles for potential biomedical applications. Faraday Discussions, 2014, 175, 241-255.	1.6	5
85	Revisiting and revising the purinosome. Molecular BioSystems, 2014, 10, 369.	2.9	18
86	Yeast Cells Expressing the Human Mitochondrial DNA Polymerase Reveal Correlations between Polymerase Fidelity and Human Disease Progression. Journal of Biological Chemistry, 2014, 289, 5970-5985.	1.6	18
87	Protein-to-mRNA Ratios Are Conserved between <i>Pseudomonas aeruginosa</i> Strains. Journal of Proteome Research, 2014, 13, 2370-2380.	1.8	33
88	Identifying direct targets of transcription factor Rfx2 that coordinate ciliogenesis and cell movement. Genomics Data, 2014, 2, 192-194.	1.3	12
89	Statistical Approach to Protein Quantification. Molecular and Cellular Proteomics, 2014, 13, 666-677.	2.5	46
90	Proteomic Identification of Monoclonal Antibodies from Serum. Analytical Chemistry, 2014, 86, 4758-4766.	3.2	69

#	Article	IF	Citations
91	Coordinated genomic control of ciliogenesis and cell movement by RFX2. ELife, 2014, 3, e01439.	2.8	121
92	ComplexQuant: High-throughput computational pipeline for the global quantitative analysis of endogenous soluble protein complexes using high resolution protein HPLC and precision label-free LC/MS/MS. Journal of Proteomics, 2013, 81, 102-111.	1,2	17
93	Prediction of gene-phenotype associations in humans, mice, and plants using phenologs. BMC Bioinformatics, 2013, 14, 203.	1.2	36
94	Role of Pseudomonas aeruginosa Peptidoglycan-Associated Outer Membrane Proteins in Vesicle Formation. Journal of Bacteriology, 2013, 195, 213-219.	1.0	99
95	The proteomic response to mutants of the Escherichia coli RNA degradosome. Molecular BioSystems, 2013, 9, 750.	2.9	8
96	A Bacteriophage Tailspike Domain Promotes Self-Cleavage of a Human Membrane-Bound Transcription Factor, the Myelin Regulatory Factor MYRF. PLoS Biology, 2013, 11, e1001624.	2.6	59
97	Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2993-2998.	3.3	127
98	Transiently Transfected Purine Biosynthetic Enzymes Form Stress Bodies. PLoS ONE, 2013, 8, e56203.	1.1	11
99	Prediction and Validation of Gene-Disease Associations Using Methods Inspired by Social Network Analyses. PLoS ONE, 2013, 8, e58977.	1.1	114
100	Pseudomonas aeruginosa Enhances Production of a Non-Alginate Exopolysaccharide during Long-Term Colonization of the Cystic Fibrosis Lung. PLoS ONE, 2013, 8, e82621.	1.1	34
101	Evolutionarily Repurposed Networks Reveal the Well-Known Antifungal Drug Thiabendazole to Be a Novel Vascular Disrupting Agent. PLoS Biology, 2012, 10, e1001379.	2.6	44
102	Proteomic and protein interaction network analysis of human T lymphocytes during cellâ€eycle entry. Molecular Systems Biology, 2012, 8, 573.	3.2	19
103	A Census of Human Soluble Protein Complexes. Cell, 2012, 150, 1068-1081.	13.5	781
104	ld2a functions to limit Notch pathway activity and thereby influence the transition from proliferation to differentiation of retinoblasts during zebrafish retinogenesis. Developmental Biology, 2012, 371, 280-292.	0.9	18
105	Label-Free Protein Quantitation Using Weighted Spectral Counting. Methods in Molecular Biology, 2012, 893, 321-341.	0.4	26
106	Dynamic Reorganization of Metabolic Enzymes into Intracellular Bodies. Annual Review of Cell and Developmental Biology, 2012, 28, 89-111.	4.0	134
107	Flaws in evaluation schemes for pair-input computational predictions. Nature Methods, 2012, 9, 1134-1136.	9.0	157
108	RIDDLE: Reflective diffusion and local extension reveal functional associations for unannotated gene sets via proximity in a gene network. Genome Biology, 2012, 13, R125.	13.9	16

#	Article	IF	CITATIONS
109	Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics, 2012, 13, 227-232.	7.7	3,228
110	RFX2 is broadly required for ciliogenesis during vertebrate development. Developmental Biology, 2012, 363, 155-165.	0.9	98
111	MSblender: A Probabilistic Approach for Integrating Peptide Identifications from Multiple Database Search Engines. Journal of Proteome Research, 2011, 10, 2949-2958.	1.8	86
112	Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network. Nature Protocols, 2011, 6, 1429-1442.	5 . 5	41
113	A role for central spindle proteins in cilia structure and function. Cytoskeleton, 2011, 68, 112-124.	1.0	32
114	Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18548-18553.	3.3	170
115	Revisiting the negative example sampling problem for predicting protein–protein interactions. Bioinformatics, 2011, 27, 3024-3028.	1.8	62
116	Protein Expression Regulation under Oxidative Stress. Molecular and Cellular Proteomics, 2011, 10, M111.009217.	2.5	113
117	Two-tiered Approach Identifies a Network of Cancer and Liver Disease-related Genes Regulated by miR-122. Journal of Biological Chemistry, 2011, 286, 18066-18078.	1.6	54
118	Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Research, 2011, 21, 1109-1121.	2.4	646
119	Sequence signatures and mRNA concentration can explain twoâ€thirds of protein abundance variation in a human cell line. Molecular Systems Biology, 2010, 6, 400.	3.2	526
120	It's the machine that matters: Predicting gene function and phenotype from protein networks. Journal of Proteomics, 2010, 73, 2277-2289.	1.2	111
121	Protein abundances are more conserved than mRNA abundances across diverse taxa. Proteomics, 2010, 10, 4209-4212.	1.3	131
122	Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nature Biotechnology, 2010, 28, 149-156.	9.4	332
123	Predicting genetic modifier loci using functional gene networks. Genome Research, 2010, 20, 1143-1153.	2.4	83
124	Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6544-6549.	3.3	275
125	Characterising and Predicting Haploinsufficiency in the Human Genome. PLoS Genetics, 2010, 6, e1001154.	1.5	579
126	Parallel Evolution in Pseudomonas aeruginosa over 39,000 Generations <i>In Vivo</i> . MBio, 2010, 1, .	1.8	105

#	Article	IF	CITATIONS
127	Defining the Pathway of Cytoplasmic Maturation of the 60S Ribosomal Subunit. Molecular Cell, 2010, 39, 196-208.	4.5	177
128	Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10147-10152.	3.3	333
129	Ribosome stalk assembly requires the dual-specificity phosphatase Yvh1 for the exchange of Mrt4 with PO. Journal of Cell Biology, 2009, 186, 849-862.	2.3	109
130	Absolute abundance for the masses. Nature Biotechnology, 2009, 27, 825-826.	9.4	9
131	The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nature Cell Biology, 2009, 11, 1225-1232.	4.6	196
132	Systematic Definition of Protein Constituents along the Major Polarization Axis Reveals an Adaptive Reuse of the Polarization Machinery in Pheromone-Treated Budding Yeast. Journal of Proteome Research, 2009, 8, 6-19.	1.8	28
133	A Synthetic Genetic Edge Detection Program. Cell, 2009, 137, 1272-1281.	13.5	442
134	Disorder, Promiscuity, and Toxic Partnerships. Cell, 2009, 138, 16-18.	13.5	27
135	Integrating shotgun proteomics and mRNA expression data to improve protein identification. Bioinformatics, 2009, 25, 1397-1403.	1.8	59
136	Global signatures of protein and mRNA expression levels. Molecular BioSystems, 2009, 5, 1512-26.	2.9	841
137	Mining gene functional networks to improve mass-spectrometry-based protein identification. Bioinformatics, 2009, 25, 2955-2961.	1.8	34
138	Rational Extension of the Ribosome Biogenesis Pathway Using Network-Guided Genetics. PLoS Biology, 2009, 7, e1000213.	2.6	156
139	Effects of Functional Bias on Supervised Learning of a Gene Network Model. Methods in Molecular Biology, 2009, 541, 463-475.	0.4	12
140	Human Cell Chips: Adapting DNA Microarray Spotting Technology to Cell-Based Imaging Assays. PLoS ONE, 2009, 4, e7088.	1.1	22
141	A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nature Genetics, 2008, 40, 181-188.	9.4	284
142	The APEX Quantitative Proteomics Tool: Generating protein quantitation estimates from LC-MS/MS proteomics results. BMC Bioinformatics, 2008, 9, 529.	1.2	140
143	Buffering by gene duplicates: an analysis of molecular correlates and evolutionary conservation. BMC Genomics, 2008, 9, 609.	1.2	21
144	The Proteomic Response of <i>Mycobacterium smegmatis</i> to Anti-Tuberculosis Drugs Suggests Targeted Pathways. Journal of Proteome Research, 2008, 7, 855-865.	1.8	36

#	Article	IF	Citations
145	Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy. Genome Biology, 2008, 9, S5.	13.9	66
146	A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biology, 2008, 9, S2.	13.9	214
147	Integrating Functional Genomics Data. Methods in Molecular Biology, 2008, 453, 267-278.	0.4	8
148	Bud23 Methylates G1575 of 18S rRNA and Is Required for Efficient Nuclear Export of Pre-40S Subunits. Molecular and Cellular Biology, 2008, 28, 3151-3161.	1.1	107
149	Mechanisms of Cell Cycle Control Revealed by a Systematic and Quantitative Overexpression Screen in S. cerevisiae. PLoS Genetics, 2008, 4, e1000120.	1.5	63
150	Age-Dependent Evolution of the Yeast Protein Interaction Network Suggests a Limited Role of Gene Duplication and Divergence. PLoS Computational Biology, 2008, 4, e1000232.	1.5	71
151	Group II Intron Protein Localization and Insertion Sites Are Affected by Polyphosphate. PLoS Biology, 2008, 6, e150.	2.6	23
152	A map of human protein interactions derived from coâ€expression of human mRNAs and their orthologs. Molecular Systems Biology, 2008, 4, 180.	3.2	77
153	Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data. Nature Protocols, 2008, 3, 1444-1451.	5.5	47
154	24 Bioinformatic Prediction of Yeast Gene Function. Methods in Microbiology, 2007, , 597-628.	0.4	4
155	Broad network-based predictability of Saccharomyces cerevisiae gene loss-of-function phenotypes. Genome Biology, 2007, 8, R258.	13.9	87
156	An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae. PLoS ONE, 2007, 2, e988.	1.1	174
157	Global metabolic changes following loss of a feedback loop reveal dynamic steady states of the yeast metabolome. Metabolic Engineering, 2007, 9, 8-20.	3.6	24
158	How do shotgun proteomics algorithms identify proteins?. Nature Biotechnology, 2007, 25, 755-757.	9.4	84
159	Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nature Biotechnology, 2007, 25, 117-124.	9.4	1,024
160	Systems Biology Analysis of Human Primary T Cells Identifies SAP145 as Rate Limiting for the G1â†'S Phase Transition Blood, 2007, 110, 3350-3350.	0.6	0
161	Reducing MCM Loading Causes Chromosomal Aneuploidy Blood, 2007, 110, 3349-3349.	0.6	0
162	How complete are current yeast and human protein-interaction networks?. Genome Biology, 2006, 7, 120.	13.9	376

#	Article	IF	Citations
163	Systematic profiling of cellular phenotypes with spotted cell microarrays reveals mating-pheromone response genes. Genome Biology, 2006, 7, R6.	13.9	37
164	Chromatographic Alignment of ESI-LC-MS Proteomics Data Sets by Ordered Bijective Interpolated Warping. Analytical Chemistry, 2006, 78, 6140-6152.	3.2	219
165	A fast coarse filtering method for peptide identification by mass spectrometry. Bioinformatics, 2006, 22, 1524-1531.	1.8	36
166	Systematic profiling of cellular phenotypes and gene function using spotted cellular microarrays. FASEB Journal, 2006, 20, LB61.	0.2	0
167	Systematic profiling of cellular phenotypes with spotted cell microarrays reveals new mating pheromone response genes. FASEB Journal, 2006, 20, A928.	0.2	1
168	Engineering Escherichia coli to see light. Nature, 2005, 438, 441-442.	13.7	565
169	Comparative experiments on learning information extractors for proteins and their interactions. Artificial Intelligence in Medicine, 2005, 33, 139-155.	3.8	272
170	Mass spectrometry of the M. smegmatis proteome: Protein expression levels correlate with function, operons, and codon bias. Genome Research, 2005, 15, 1118-1126.	2.4	64
171	Protein function prediction using the Protein Link EXplorer (PLEX). Bioinformatics, 2005, 21, 2558-2559.	1.8	42
172	Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biology, 2005, 6, r40.	13.9	195
173	Genome sequence of Haloarcula marismortui: A halophilic archaeon from the Dead Sea. Genome Research, 2004, 14, 2221-2234.	2.4	268
174	A probabilistic view of gene function. Nature Genetics, 2004, 36, 559-564.	9.4	120
175	The need for a public proteomics repository. Nature Biotechnology, 2004, 22, 471-472.	9.4	157
176	Response to McDermott and Samudrala: Enhanced functional information from predicted protein networks. Trends in Biotechnology, 2004, 22, 62-63.	4.9	3
177	Protein interaction networks from yeast to human. Current Opinion in Structural Biology, 2004, 14, 292-299.	2.6	323
178	A Probabilistic Functional Network of Yeast Genes. Science, 2004, 306, 1555-1558.	6.0	640
179	Development through the eyes of functional genomics. Current Opinion in Genetics and Development, 2004, 14, 336-342.	1.5	12
180	LGL: Creating a Map of Protein Function with an Algorithm for Visualizing Very Large Biological Networks. Journal of Molecular Biology, 2004, 340, 179-190.	2.0	179

#	Article	IF	Citations
181	Practical computational approaches to inferring protein function. Drug Discovery Today Biosilico, 2004, 2, 24-29.	0.7	0
182	The genome sequence of the filamentous fungus Neurospora crassa. Nature, 2003, 422, 859-868.	13.7	1,528
183	Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Nature Biotechnology, 2003, 21, 1055-1062.	9.4	202
184	Exploiting the Co-evolution of Interacting Proteins to Discover Interaction Specificity. Journal of Molecular Biology, 2003, 327, 273-284.	2.0	193
185	Diametrical clustering for identifying anti-correlated gene clusters. Bioinformatics, 2003, 19, 1612-1619.	1.8	82
186	Expression deconvolution: A reinterpretation of DNA microarray data reveals dynamic changes in cell populations. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10370-10375.	3.3	124
187	Predicting functional linkages from gene fusions with confidence. Applied Bioinformatics, 2002, 1, 93-100.	1.7	45
188	The path not taken. Nature Biotechnology, 2001, 19, 626-627.	9.4	47
189	Exploiting big biology: Integrating large-scale biological data for function inference. Briefings in Bioinformatics, 2001, 2, 363-374.	3.2	37
190	Measuring the Dynamics of the Proteome. Genome Research, 2001, 11, 191-193.	2.4	13
191	Protein function in the post-genomic era. Nature, 2000, 405, 823-826.	13.7	690
192	Computational genetics: finding protein function by nonhomology methods. Current Opinion in Structural Biology, 2000, 10, 359-365.	2.6	130
193	Characterization of a Thermostable DNA Glycosylase Specific for U/G and T/G Mismatches from the Hyperthermophilic ArchaeonPyrobaculum aerophilum. Journal of Bacteriology, 2000, 182, 1272-1279.	1.0	62
194	A combined algorithm for genome-wide prediction of protein function. Nature, 1999, 402, 83-86.	13.7	879
195	A fast algorithm for genome-wide analysis of proteins with repeated sequences. Proteins: Structure, Function and Bioinformatics, 1999, 35, 440-446.	1.5	71
196	A census of protein repeats. Journal of Molecular Biology, 1999, 293, 151-160.	2.0	385
197	Structural analysis shows five glycohydrolase families diverged from a common ancestor. The Journal of Experimental Zoology, 1998, 282, 127-132.	1.4	20
198	Structural analysis shows five glycohydrolase families diverged from a common ancestor. , 1998, 282, 127.		1

#	Article	IF	CITATIONS
199	Kinetic Analysis of Barley Chitinase. Archives of Biochemistry and Biophysics, 1997, 344, 335-342.	1.4	70
200	Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. Nature Structural Biology, 1996, 3, 133-140.	9.7	140
201	X-ray structure of an anti-fungal chitosanase from streptomyces N174. Nature Structural Biology, 1996, 3, 155-162.	9.7	129
202	The structure of chitinases and prospects for structure-based drug design. Canadian Journal of Botany, 1995, 73, 1142-1146.	1.2	7
203	Crystallization of a Chitosanase from Streptomyces N174. Journal of Molecular Biology, 1993, 232, 995-996.	2.0	15
204	Cell Adhesions Link Subcellular Actomyosin Dynamics to Tissue Scale Force Production During Vertebrate Convergent Extension. SSRN Electronic Journal, 0, , .	0.4	0