Kay E Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1824527/publications.pdf Version: 2024-02-01

KAV F DAVIES

#	Article	IF	CITATIONS
1	Function and Genetics of Dystrophin and Dystrophin-Related Proteins in Muscle. Physiological Reviews, 2002, 82, 291-329.	28.8	1,018
2	Utrophin-Dystrophin-Deficient Mice as a Model for Duchenne Muscular Dystrophy. Cell, 1997, 90, 717-727.	28.9	667
3	A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genetics, 2000, 25, 440-443.	21.4	657
4	Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nature Medicine, 1998, 4, 1441-1444.	30.7	535
5	An autosomal transcript in skeletal muscle with homology to dystrophin. Nature, 1989, 339, 55-58.	27.8	501
6	Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature, 1991, 352, 815-818.	27.8	501
7	Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature, 1996, 384, 349-353.	27.8	450
8	PDZ Domains: Targeting signalling molecules to sub-membranous sites. BioEssays, 1997, 19, 469-479.	2.5	404
9	Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans. Cell, 2007, 128, 45-57.	28.9	397
10	Molecular mechanisms of muscular dystrophies: old and new players. Nature Reviews Molecular Cell Biology, 2006, 7, 762-773.	37.0	300
11	Cloning of a representative genomic library of the human X chromosome after sorting by flow cytometry. Nature, 1981, 293, 374-376.	27.8	284
12	The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Human Molecular Genetics, 2007, 16, 92-106.	2.9	278
13	Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Reports, 2004, 5, 872-876.	4.5	276
14	Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nature Medicine, 2015, 21, 270-275.	30.7	263
15	Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature, 2012, 484, 394-398.	27.8	243
16	The Pathogenesis and Therapy of Muscular Dystrophies. Annual Review of Genomics and Human Genetics, 2015, 16, 281-308.	6.2	240
17	Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nature Medicine, 1997, 3, 1216-1221.	30.7	222
18	Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nature Reviews Genetics, 2013, 14, 373-378.	16.3	214

#	Article	IF	CITATIONS
19	Postsynaptic Abnormalities at the Neuromuscular Junctions of Utrophin-deficient Mice. Journal of Cell Biology, 1997, 136, 883-894.	5.2	212
20	Evidence that a locus for familial psoriasis maps to chromosome 4q. Nature Genetics, 1996, 14, 231-233.	21.4	203
21	Skeletal muscle-specific expression of a utrophin transgene rescues utrophin-dystrophin deficient mice. Nature Genetics, 1998, 19, 79-82.	21.4	194
22	Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nature Reviews Drug Discovery, 2020, 19, 93-111.	46.4	190
23	A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6706-6711.	7.1	187
24	Pharmacological strategies for muscular dystrophy. Nature Reviews Drug Discovery, 2003, 2, 379-390.	46.4	184
25	Molecular analysis of the Duchenne muscular dystrophy region using pulsed field gel electrophoresis. Cell, 1987, 48, 351-357.	28.9	178
26	Utrophin: A Structural and Functional Comparison to Dystrophin. Brain Pathology, 1996, 6, 37-47.	4.1	165
27	Daily Treatment with SMTC1100, a Novel Small Molecule Utrophin Upregulator, Dramatically Reduces the Dystrophic Symptoms in the mdx Mouse. PLoS ONE, 2011, 6, e19189.	2.5	163
28	Isoform Diversity of Dystrobrevin, the Murine 87-kDa Postsynaptic Protein. Journal of Biological Chemistry, 1996, 271, 7802-7810.	3.4	145
29	Dystrophin-related protein, utrophin, in normal and dystrophic human fetal skeletal muscle. The Histochemical Journal, 1993, 25, 554-561.	0.6	136
30	Pharmacological advances for treatment in Duchenne muscular dystrophy. Current Opinion in Pharmacology, 2017, 34, 36-48.	3.5	133
31	Oxr1 Is Essential for Protection against Oxidative Stress-Induced Neurodegeneration. PLoS Genetics, 2011, 7, e1002338.	3.5	130
32	Characterization of a 4.8kb transcript from the Duchenne muscular dystrophy locus expressed in Schwannoma cells. Human Molecular Genetics, 1992, 1, 103-109.	2.9	125
33	The dystrophin-associated protein complex. Journal of Cell Science, 2002, 115, 2801-2803.	2.0	120
34	Syncoilin, a Novel Member of the Intermediate Filament Superfamily That Interacts with α-Dystrobrevin in Skeletal Muscle. Journal of Biological Chemistry, 2001, 276, 6645-6655.	3.4	114
35	A- and B-utrophin Have Different Expression Patterns and Are Differentially Up-regulated in mdx Muscle. Journal of Biological Chemistry, 2002, 277, 45285-45290.	3.4	114
36	A dominant mutation in Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the blind-drunk mouse. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2431-2436.	7.1	109

#	Article	IF	CITATIONS
37	Correlation of SMNt and SMNc gene copy number with age of onset and survival in spinal muscular atrophy. European Journal of Human Genetics, 1998, 6, 467-474.	2.8	108
38	Prevention of Dystrophic Pathology in Severely Affected Dystrophin/Utrophin-deficient Mice by Morpholino-oligomer-mediated Exon-skipping. Molecular Therapy, 2010, 18, 198-205.	8.2	102
39	ZZ domain is essentially required for the physiological binding of dystrophin and utrophin to Â-dystroglycan. Human Molecular Genetics, 2004, 13, 693-702.	2.9	95
40	Therapeutic approaches to muscular dystrophy. Human Molecular Genetics, 2011, 20, R69-R78.	2.9	92
41	Evaluating the links between schizophrenia and sleep and circadian rhythm disruption. Journal of Neural Transmission, 2012, 119, 1061-1075.	2.8	92
42	The utrophin and dystrophin genes share similarities in genomic structure. Human Molecular Genetics, 1993, 2, 1765-1772.	2.9	91
43	Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping. Human Molecular Genetics, 2012, 21, 2559-2571.	2.9	87
44	Disrupted Circadian Rhythms in a Mouse Model of Schizophrenia. Current Biology, 2012, 22, 314-319.	3.9	86
45	Muscle and Neural Isoforms of Agrin Increase Utrophin Expression in Cultured Myotubes via a Transcriptional Regulatory Mechanism. Journal of Biological Chemistry, 1998, 273, 736-743.	3.4	85
46	Alternative splicing of dystrobrevin regulates the stoichiometry of syntrophin binding to the dystrophin protein complex. Current Biology, 2000, 10, 1295-1298.	3.9	81
47	Sarcolemmal nNOS anchoring reveals a qualitative difference between dystrophin and utrophin. Journal of Cell Science, 2010, 123, 2008-2013.	2.0	80
48	Identification of valid housekeeping genes for quantitative RT-PCR analysis of cardiosphere-derived cells preconditioned under hypoxia or with prolyl-4-hydroxylase inhibitors. Molecular Biology Reports, 2012, 39, 4857-4867.	2.3	78
49	Utrophin: A potential replacement for dystrophin?. Neuromuscular Disorders, 1993, 3, 537-539.	0.6	76
50	Testing of SHIRPA, a mouse phenotypic assessment protocol, on Dmd mdx and Dmd mdx3cv dystrophin-deficient mice. Mammalian Genome, 2000, 11, 725-728.	2.2	76
51	Enhanced Exon-skipping Induced by U7 snRNA Carrying a Splicing Silencer Sequence: Promising Tool for DMD Therapy. Molecular Therapy, 2009, 17, 1234-1240.	8.2	75
52	Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis. Brain, 2015, 138, 1167-1181.	7.6	72
53	Association of Syncoilin and Desmin. Journal of Biological Chemistry, 2002, 277, 3433-3439.	3.4	71
54	Discovery of 2-Arylbenzoxazoles as Upregulators of Utrophin Production for the Treatment of Duchenne Muscular Dystrophy, Journal of Medicinal Chemistry, 2011, 54, 3241-3250	6.4	70

#	Article	IF	CITATIONS
55	Generation and Characterization of Transgenic Mice with the Full-length Human DMD Gene. Journal of Biological Chemistry, 2008, 283, 5899-5907.	3.4	69
56	Second-generation compound for the modulation of utrophin in the therapy of DMD. Human Molecular Genetics, 2015, 24, 4212-4224.	2.9	69
57	Interaction between environmental and genetic factors modulates schizophrenic endophenotypes in the Snap-25 mouse mutant blind-drunk. Human Molecular Genetics, 2009, 18, 4576-4589.	2.9	68
58	A Mutation in <i>Af4</i> Is Predicted to Cause Cerebellar Ataxia and Cataracts in the Robotic Mouse. Journal of Neuroscience, 2003, 23, 1631-1637.	3.6	66
59	Diaphragm rescue alone prevents heart dysfunction in dystrophic mice. Human Molecular Genetics, 2011, 20, 413-421.	2.9	66
60	Temporal transcriptomics suggest that twin-peaking genes reset the clock. ELife, 2015, 4, .	6.0	64
61	Survival motor neuron deficiency enhances progression in an amyotrophic lateral sclerosis mouse model. Neurobiology of Disease, 2009, 34, 511-517.	4.4	62
62	MASA syndrome: further clinical delineation and chromosomal localisation. Human Genetics, 1989, 82, 367-70.	3.8	61
63	Genotype mosaicism in fragile X fetal tissues. Human Genetics, 1992, 89, 114-116.	3.8	61
64	Non-toxic ubiquitous over-expression of utrophin in the mdx mouse. Neuromuscular Disorders, 2001, 11, 713-721.	0.6	61
65	Advances in genetic therapeutic strategies for Duchenne muscular dystrophy. Experimental Physiology, 2015, 100, 1458-1467.	2.0	61
66	Expression of the dystrophin-related protein (utrophin) gene during mouse embryogenesis. Developmental Dynamics, 1993, 198, 254-264.	1.8	60
67	AAV Genome Loss From Dystrophic Mouse Muscles During AAV-U7 snRNA-mediated Exon-skipping Therapy. Molecular Therapy, 2013, 21, 1551-1558.	8.2	58
68	Safety, Tolerability, and Pharmacokinetics of SMT C1100, a 2-Arylbenzoxazole Utrophin Modulator, following Single- and Multiple-Dose Administration to Pediatric Patients with Duchenne Muscular Dystrophy. PLoS ONE, 2016, 11, e0152840.	2.5	54
69	A Candidate Gene for Mild Mental Handicap at the Fraxe Fragile Site. Human Molecular Genetics, 1996, 5, 275-282.	2.9	53
70	Disruption of SMN function by ectopic expression of the human <i>SMN</i> gene in <i>Drosophila</i> . FEBS Letters, 2000, 486, 99-102.	2.8	53
71	Progress in therapy for Duchenne muscular dystrophy. Experimental Physiology, 2011, 96, 1101-1113.	2.0	51
72	Oxr1 improves pathogenic cellular features of ALS-associated FUS and TDP-43 mutations. Human Molecular Genetics, 2015, 24, 3529-3544.	2.9	50

#	Article	IF	CITATIONS
73	Efficient Utrophin Expression Following Adenovirus Gene Transfer in Dystrophic Muscle. Biochemical and Biophysical Research Communications, 1998, 242, 244-247.	2.1	48
74	Engineering Multiple U7snRNA Constructs to Induce Single and Multiexon-skipping for Duchenne Muscular Dystrophy. Molecular Therapy, 2012, 20, 1212-1221.	8.2	48
75	The Evolutionarily Conserved Tre2/Bub2/Cdc16 (TBC), Lysin Motif (LysM), Domain Catalytic (TLDc) Domain Is Neuroprotective against Oxidative Stress. Journal of Biological Chemistry, 2016, 291, 2751-2763.	3.4	48
76	The application of DNA recombinant technology to the analysis of the human genome and genetic disease. Human Genetics, 1981, 58, 351-357.	3.8	47
77	Safety, tolerability, and pharmacokinetics of SMT C1100, a 2â€arylbenzoxazole utrophin modulator, following single―and multipleâ€dose administration to healthy male adult volunteers. Journal of Clinical Pharmacology, 2015, 55, 698-707.	2.0	47
78	Mediation of Af4 protein function in the cerebellum by Siah proteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14901-14906.	7.1	46
79	Region-specific deficits in dopamine, but not norepinephrine, signaling in a novel A30P α-synuclein BAC transgenic mouse. Neurobiology of Disease, 2014, 62, 193-207.	4.4	46
80	A-utrophin up-regulation in mdx skeletal muscle is independent of regeneration. Neuromuscular Disorders, 2004, 14, 19-23.	0.6	44
81	Utrophin Up-Regulation by an Artificial Transcription Factor in Transgenic Mice. PLoS ONE, 2007, 2, e774.	2.5	43
82	Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice. Neurobiology of Aging, 2014, 35, 906-915.	3.1	39
83	Treating Muscular Dystrophy with Stem Cells?. Cell, 2006, 127, 1304-1306.	28.9	38
84	SNARE proteins and schizophrenia: linking synaptic and neurodevelopmental hypotheses Acta Biochimica Polonica, 2008, 55, 619-628.	0.5	38
85	Dystroglycan mRNA expression during normal and mdx mouse embryogenesis: A comparison with utrophin and the apo-dystrophins. Developmental Dynamics, 1995, 204, 178-185.	1.8	37
86	Pharmacologically Targeting the Primary Defect and Downstream Pathology in Duchenne Muscular Dystrophy. Current Gene Therapy, 2012, 12, 206-244.	2.0	37
87	Cognitive, behavioral, and neuroanatomical assessment of two unrelated male children expressingFRAXE. , 1997, 74, 73-81.		35
88	Identification of a New Pmp22 Mouse Mutant and Trafficking Analysis of a Pmp22 Allelic Series Suggesting That Protein Aggregates May Be Protective in Pmp22-Associated Peripheral Neuropathy. Molecular and Cellular Neurosciences, 2002, 21, 114-125.	2.2	34
89	Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies. PLoS ONE, 2016, 11, e0150818.	2.5	33
90	Identification of serum protein biomarkers for utrophin based DMD therapy. Scientific Reports, 2017, 7, 43697.	3.3	33

#	Article	IF	CITATIONS
91	The potential of utrophin and dystrophin combination therapies for Duchenne muscular dystrophy. Human Molecular Genetics, 2019, 28, 2189-2200.	2.9	33
92	The potential of utrophin modulators for the treatment of Duchenne muscular dystrophy. Expert Opinion on Orphan Drugs, 2018, 6, 179-192.	0.8	32
93	Characterization of deletions in the dystrophin gene giving mild phenotypes. American Journal of Medical Genetics Part A, 1990, 37, 136-142.	2.4	31
94	A Phase 1b Trial to Assess the Pharmacokinetics of Ezutromid in Pediatric Duchenne Muscular Dystrophy Patients on a Balanced Diet. Clinical Pharmacology in Drug Development, 2019, 8, 922-933.	1.6	31
95	Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid. Angewandte Chemie - International Edition, 2020, 59, 2420-2428.	13.8	31
96	The antioxidant protein Oxr1 influences aspects of mitochondrial morphology. Free Radical Biology and Medicine, 2016, 95, 255-267.	2.9	30
97	Expression of the murine homologue of FMR2 in mouse brain and during development. Human Molecular Genetics, 1998, 7, 441-448.	2.9	29
98	Characterisation of novel point mutations in the survival motor neuron gene SMN , in three patients with SMA. Human Genetics, 2001, 108, 356-357.	3.8	29
99	Absent sleep EEG spindle activity in GluA1 (Gria1) knockout mice: relevance to neuropsychiatric disorders. Translational Psychiatry, 2018, 8, 154.	4.8	29
100	Preconditioning of Cardiosphere-Derived Cells with Hypoxia or Prolyl-4-Hydroxylase Inhibitors Increases Stemness and Decreases Reliance on Oxidative Metabolism. Cell Transplantation, 2016, 25, 35-53.	2.5	28
101	The costs of instability. Nature, 1992, 356, 15-15.	27.8	27
102	Candidate Screening of the TRPC3 Gene in Cerebellar Ataxia. Cerebellum, 2011, 10, 296-299.	2.5	27
103	New insights into behaviour using mouse ENU mutagenesis. Human Molecular Genetics, 2012, 21, R72-R81.	2.9	27
104	Evaluating the potential of novel genetic approaches for the treatment of Duchenne muscular dystrophy. European Journal of Human Genetics, 2021, 29, 1369-1376.	2.8	26
105	Syncoilin accumulation in two patients with desmin-related myopathy. Neuromuscular Disorders, 2003, 13, 42-48.	0.6	25
106	Laf4/Aff3, a Gene Involved in Intellectual Disability, Is Required for Cellular Migration in the Mouse Cerebral Cortex. PLoS ONE, 2014, 9, e105933.	2.5	25
107	Severe nonspecific X-linked mental retardation caused by a proximally Xp located gene: Intragenic heterogeneity or a new form of X-linked mental retardation?. American Journal of Medical Genetics Part A, 1993, 46, 172-175.	2.4	24
108	Analysis of mutations in the tudor domain of the survival motor neuron protein SMN. European Journal of Human Genetics, 1999, 7, 519-525.	2.8	24

#	Article	IF	CITATIONS
109	Localization of the fragile X mental retardation 2 (FMR2) protein in mammalian brain. European Journal of Neuroscience, 2000, 12, 381-384.	2.6	24
110	The mutant Moonwalker TRPC3 channel links calcium signaling to lipid metabolism in the developing cerebellum. Human Molecular Genetics, 2015, 24, 4114-4125.	2.9	24
111	Analysis of mutations at the fragile X locus using the DNA probe Ox1.9. American Journal of Medical Genetics Part A, 1992, 43, 244-254.	2.4	23
112	Behavioural characterisation of the robotic mouse mutant. Behavioural Brain Research, 2007, 181, 239-247.	2.2	23
113	Syncoilin modulates peripherin filament networks and is necessary for large-calibre motor neurons. Journal of Cell Science, 2010, 123, 2543-2552.	2.0	23
114	Embryonic myosin is a regeneration marker to monitor utrophin-based therapies for DMD. Human Molecular Genetics, 2019, 28, 307-319.	2.9	23
115	Control of backbone chemistry and chirality boost oligonucleotide splice switching activity. Nucleic Acids Research, 2022, 50, 5443-5466.	14.5	23
116	Genomic organization and refined mapping of the mouse β-dystrobrevin gene. Mammalian Genome, 1998, 9, 857-862.	2.2	22
117	Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease. Mammalian Genome, 2007, 18, 412-424.	2.2	22
118	AF4 Is a Critical Regulator of the IGF-1 Signaling Pathway during Purkinje Cell Development. Journal of Neuroscience, 2009, 29, 15366-15374.	3.6	22
119	Cardiac Â-actin over-expression therapy in dominant ACTA1 disease. Human Molecular Genetics, 2013, 22, 3987-3997.	2.9	22
120	Micro-utrophin Improves Cardiac and Skeletal Muscle Function of Severely Affected D2/mdx Mice. Molecular Therapy - Methods and Clinical Development, 2018, 11, 92-105.	4.1	21
121	Molecular studies of the fragile X syndrome. American Journal of Medical Genetics Part A, 1992, 43, 217-223.	2.4	20
122	Syncoilin upregulation in muscle of patients with neuromuscular disease. Muscle and Nerve, 2005, 32, 715-725.	2.2	20
123	Intermediate filament-like protein syncoilin in normal and myopathic striated muscle. Neuromuscular Disorders, 2007, 17, 970-979.	0.6	19
124	Challenges to oligonucleotides-based therapeutics for Duchenne muscular dystrophy. Skeletal Muscle, 2011, 1, 8.	4.2	19
125	Neuronal over-expression of Oxr1 is protective against ALS-associated mutant TDP-43 mislocalisation in motor neurons and neuromuscular defects in vivo. Human Molecular Genetics, 2019, 28, 3584-3599.	2.9	19
126	From diagnosis to therapy in Duchenne muscular dystrophy. Biochemical Society Transactions, 2020, 48, 813-821.	3.4	19

#	Article	IF	CITATIONS
127	SNARE proteins and schizophrenia: linking synaptic and neurodevelopmental hypotheses. Acta Biochimica Polonica, 2008, 55, 619-28.	0.5	19
128	Alterations of neuromuscular junctions in Duchenne muscular dystrophy. Neuroscience Letters, 2020, 737, 135304.	2.1	18
129	Analysis of skeletal muscle function in the C57BL6/SV129 syncoilin knockout mouse. Mammalian Genome, 2008, 19, 339-351.	2.2	17
130	Limitations to adaptive homeostasis in an hyperoxia-induced model of accelerated ageing. Redox Biology, 2019, 24, 101194.	9.0	17
131	Micro-dystrophin Genes Bring Hope of an Effective Therapy for Duchenne Muscular Dystrophy. Molecular Therapy, 2019, 27, 486-488.	8.2	17
132	No Genetic Linkage Detected for Schizophrenia to Xq27–q28. British Journal of Psychiatry, 1991, 158, 630-634.	2.8	16
133	New somatic cell hybrids for physical mapping in distal Xq and the fragile X region. American Journal of Medical Genetics Part A, 1991, 38, 418-420.	2.4	16
134	A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology. Journal of Biological Chemistry, 2014, 289, 26709-26721.	3.4	16
135	2-Arylbenzo[<i>d</i>]oxazole Phosphinate Esters as Second-Generation Modulators of Utrophin for the Treatment of Duchenne Muscular Dystrophy. Journal of Medicinal Chemistry, 2020, 63, 7880-7891.	6.4	16
136	Regenerative biomarkers for Duchenne muscular dystrophy. Neural Regeneration Research, 2019, 14, 1317.	3.0	16
137	Analysis of human neurological disorders using mutagenesis in the mouse. Clinical Science, 2005, 108, 385-397.	4.3	14
138	Syncoilin isoform organization and differential expression in murine striated muscle. Journal of Structural Biology, 2009, 165, 196-203.	2.8	14
139	The era of genomic medicine. Clinical Medicine, 2013, 13, 594-601.	1.9	14
140	Utrophin influences mitochondrial pathology and oxidative stress in dystrophic muscle. Skeletal Muscle, 2017, 7, 22.	4.2	14
141	The Robotic Mouse: Understanding the Role of AF4, a Cofactor of Transcriptional Elongation and Chromatin Remodelling, in Purkinje Cell Function. Cerebellum, 2009, 8, 175-183.	2.5	13
142	Synthesis of SMT022357 enantiomers and inÂvivo evaluation in a Duchenne muscular dystrophy mouse model. Tetrahedron, 2020, 76, 130819.	1.9	13
143	Deletion of AMPA receptor GluA1 subunit gene (Gria1) causes circadian rhythm disruption and aberrant responses to environmental cues. Translational Psychiatry, 2021, 11, 588.	4.8	13
144	Alternative utrophin mRNAs contribute to phenotypic differences between dystrophinâ€deficient mice and Duchenne muscular dystrophy. FEBS Letters, 2018, 592, 1856-1869.	2.8	12

#	Article	IF	CITATIONS
145	DNA studies of X-linked mental retardation associated with a fragile site at Xq27. American Journal of Medical Genetics Part A, 1986, 23, 633-642.	2.4	10
146	Linkage analysis in families with autosomal recessive limb-girdle muscular dystrophy (LGMD) and 6q probes flanking the dystrophin-related sequence. American Journal of Medical Genetics Part A, 1991, 38, 140-146.	2.4	10
147	The Cellular Processing Capacity Limits the Amounts of Chimeric U7 snRNA Available for Antisense Delivery. Molecular Therapy - Nucleic Acids, 2012, 1, e31.	5.1	10
148	Isolation, Structural Identification, Synthesis, and Pharmacological Profiling of 1,2- <i>trans</i> -Dihydro-1,2-diol Metabolites of the Utrophin Modulator Ezutromid. Journal of Medicinal Chemistry, 2020, 63, 2547-2556.	6.4	10
149	Verifying nomenclature of DNA variants in submitted manuscripts: Guidance for journals. Human Mutation, 2021, 42, 3-7.	2.5	10
150	Surrogate gene therapy for muscular dystrophy. Nature Medicine, 2019, 25, 1473-1474.	30.7	9
151	Discovery and mechanism of action studies of 4,6-diphenylpyrimidine-2-carbohydrazides as utrophin modulators for the treatment of Duchenne muscular dystrophy. European Journal of Medicinal Chemistry, 2021, 220, 113431.	5.5	9
152	The fragile X syndrome. Clinical Science, 1992, 83, 255-264.	4.3	8
153	Calmodulin regulation of utrophin actin binding. Biochemical Society Transactions, 1995, 23, 397S-397S.	3.4	8
154	Population genetics of the FRAXE and FRAXF GCC repeats, and a novel CGG repeat, in Xq28. , 1997, 73, 463-469.		8
155	Modified Patient Stem Cells as Prelude to Autologous Treatment of Muscular Dystrophy. Cell Stem Cell, 2007, 1, 595-596.	11.1	8
156	Eagl andNotI linking clones from human chromosomes 11 and Xp. Human Genetics, 1996, 97, 742-749.	3.8	7
157	Detection and exclusion of carriers of ornithine transcarbamylase deficiency by RFLP analysis. Clinical Genetics, 1986, 29, 449-452.	2.0	7
158	Muscular Dystrophies Related to the Cytoskeleton/Nuclear Envelope. Novartis Foundation Symposium, 2008, , 98-117.	1.1	7
159	Circadian profiling in two mouse models of lysosomal storage disorders; Niemann Pick type-C and Sandhoff disease. Behavioural Brain Research, 2016, 297, 213-223.	2.2	6
160	Genes Involved in the Formation of the Earliest Cortical Circuits. Novartis Foundation Symposium, 0, , 212-229.	1.1	6
161	Decreasing HepG2 Cytotoxicity by Lowering the Lipophilicity of Benzo[d]oxazolephosphinate Ester Utrophin Modulators. ACS Medicinal Chemistry Letters, 2020, 11, 2421-2427.	2.8	5
162	Infantile autism, fragile (X) (q27.3) and RFLP analysis in an extended Swedish family. Clinical Genetics, 1988, 34, 265-271.	2.0	4

0

#	Article	IF	CITATIONS
163	A new way to regulate the NMJ. Nature Medicine, 2007, 13, 538-539.	30.7	3
164	The Long Journey from Diagnosis to Therapy. Annual Review of Genomics and Human Genetics, 2020, 21, 1-13.	6.2	3
165	Immunogold confirmation that utrophin is localized to the normal position of dystrophin in dystrophin. A strophin-negative transgenic mouse muscle. The Histochemical Journal, 2001, 33, 579-583.	0.6	2
166	Structure-activity relationships of 2-pyrimidinecarbohydrazides as utrophin modulators for the potential treatment of Duchenne muscular dystrophy. Bioorganic and Medicinal Chemistry, 2022, 69, 116812.	3.0	2
167	Muscular dystrophy: from gene to patient. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2000, 11, 7-9.	2.0	1
168	Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid. Angewandte Chemie, 2020, 132, 2441-2449.	2.0	1
169	Spinal muscular atrophy in trizygotic triplets. Pediatrics International, 1994, 36, 522-526.	0.5	0
170	Motor Neurons and Microarrays-Understanding the Pathogenesis of Spinal Muscular Atrophy. Clinical Science, 2003, 104, 40P-41P.	0.0	0
171	Recent advances in Duchenne muscular dystrophy. Degenerative Neurological and Neuromuscular Disease, 2012, 2, 141.	1.3	0
172	Interview with Professor Kay Davies. Future Neurology, 2015, 10, 305-307.	0.5	0
173	2015 William Allan Award 1. American Journal of Human Genetics, 2016, 98, 419-426.	6.2	0
174	Highway to HHGE: An Interview with Dame Kay E. Davies. CRISPR Journal, 2020, 3, 325-331.	2.9	0
175	The Centromeric Protein, CEN(P)-F, a Marker of Cell Proliferation Is Regulated by Hypoxia in Human Mesenchymal Stem Cells and Their Bone Marrow Stromal Progeny Blood, 2005, 106, 1385-1385.	1.4	0
176	Robotic Mouse. , 2013, , 1481-1497.		0
177	Robotic Mouse. , 2020, , 1-18.		0

178 Robotic Mouse. , 2022, , 1667-1684.