Conglai Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/182444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy, 2015, 12, 141-151.	16.0	540
2	Nitrogenâ€Doped Carbon Networks for High Energy Density Supercapacitors Derived from Polyaniline Coated Bacterial Cellulose. Advanced Functional Materials, 2014, 24, 3953-3961.	14.9	336
3	Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon, 2015, 93, 412-420.	10.3	281
4	Dual Support System Ensuring Porous Co–Al Hydroxide Nanosheets with Ultrahigh Rate Performance and High Energy Density for Supercapacitors. Advanced Functional Materials, 2015, 25, 1648-1655.	14.9	248
5	From flour to honeycomb-like carbon foam: Carbon makes room for high energy density supercapacitors. Nano Energy, 2015, 13, 527-536.	16.0	247
6	Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy, 2015, 11, 471-480.	16.0	219
7	Functional Pillared Graphene Frameworks for Ultrahigh Volumetric Performance Supercapacitors. Advanced Energy Materials, 2015, 5, 1500771.	19.5	184
8	Supercapacitors Based on Graphene-Supported Iron Nanosheets as Negative Electrode Materials. ACS Nano, 2013, 7, 11325-11332.	14.6	180
9	High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials. Journal of Materials Chemistry A, 2014, 2, 16678-16686.	10.3	106
10	Rational design of hybrid Co3O4/graphene films: Free-standing flexible electrodes for high performance supercapacitors. Electrochimica Acta, 2018, 259, 338-347.	5.2	75
11	Al and Co co-doped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors. Electrochimica Acta, 2014, 137, 352-358.	5.2	73
12	Nickel sulfide/graphene/carbon nanotube composites as electrode material for the supercapacitor application in the sea flashing signal system. Journal of Marine Science and Application, 2014, 13, 462-466.	1.7	24
13	Hundred-gram scale fabrication of few-layered silicene by a continuous vapor-dealloying strategy for high-performance lithium storage. Chemical Communications, 2022, 58, 5717-5720.	4.1	7
14	Energy Storage: Dual Support System Ensuring Porous Co–Al Hydroxide Nanosheets with Ultrahigh Rate Performance and High Energy Density for Supercapacitors (Adv. Funct. Mater. 11/2015). Advanced Functional Materials, 2015, 25, 1763-1763.	14.9	0