
## Laura A Solt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1824151/publications.pdf Version: 2024-02-01



LAUDA A SOLT

| #  | Article                                                                                                                                                                                                                                                                                    | IF        | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 1  | Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature, 2012, 485, 62-68.                                                                                                                                                                                  | 27.8      | 638       |
| 2  | Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature, 2011, 472, 491-494.                                                                                                                                                                                | 27.8      | 446       |
| 3  | Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nature Medicine, 2013, 19, 1039-1046.                                                                                                                                         | 30.7      | 361       |
| 4  | Hypomorphic nuclear factor-κB essential modulator mutation database and reconstitution system identifies phenotypic and immunologic diversity. Journal of Allergy and Clinical Immunology, 2008, 122, 1169-1177.e16.                                                                       | 2.9       | 240       |
| 5  | The Benzenesulfoamide T0901317<br>[ <i>N</i> -(2,2,2-Trifluoroethyl)- <i>N</i> -[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesul<br>Is a Novel Retinoic Acid Receptor-Related Orphan Receptor-α/l³ Inverse Agonist. Molecular Pharmacology,<br>2010. 77. 228-236. | fongmide] | 221       |
| 6  | The lκB kinase complex: master regulator of NF-κB signaling. Immunologic Research, 2008, 42, 3-18.                                                                                                                                                                                         | 2.9       | 216       |
| 7  | Nuclear Receptors and Their Selective Pharmacologic Modulators. Pharmacological Reviews, 2013, 65, 710-778.                                                                                                                                                                                | 16.0      | 207       |
| 8  | Modulation of Retinoic Acid Receptor-related Orphan Receptor α and γ Activity by 7-Oxygenated Sterol<br>Ligands. Journal of Biological Chemistry, 2010, 285, 5013-5025.                                                                                                                    | 3.4       | 180       |
| 9  | Action of RORs and their ligands in (patho)physiology. Trends in Endocrinology and Metabolism, 2012, 23, 619-627.                                                                                                                                                                          | 7.1       | 173       |
| 10 | Broad Anti-tumor Activity of a Small Molecule that Selectively Targets the Warburg Effect and Lipogenesis. Cancer Cell, 2015, 28, 42-56.                                                                                                                                                   | 16.8      | 158       |
| 11 | The PP2A-Associated Protein Â4 Is an Essential Inhibitor of Apoptosis. Science, 2004, 306, 695-698.                                                                                                                                                                                        | 12.6      | 142       |
| 12 | Perfect timing: circadian rhythms, sleep, and immunity — an NIH workshop summary. JCI Insight, 2020, 5,                                                                                                                                                                                    | 5.0       | 136       |
| 13 | The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future<br>Medicinal Chemistry, 2011, 3, 623-638.                                                                                                                                                   | 2.3       | 131       |
| 14 | Identification of SR2211: A Potent Synthetic RORÎ <sup>3</sup> -Selective Modulator. ACS Chemical Biology, 2012, 7, 672-677.                                                                                                                                                               | 3.4       | 126       |
| 15 | Regulation of Adipogenesis by Natural and Synthetic REV-ERB Ligands. Endocrinology, 2010, 151, 3015-3025.                                                                                                                                                                                  | 2.8       | 115       |
| 16 | Identification of SR3335 (ML-176): A Synthetic RORα Selective Inverse Agonist. ACS Chemical Biology, 2011,<br>6, 218-222.                                                                                                                                                                  | 3.4       | 114       |
| 17 | Regulation of FGF21 Expression and Secretion by Retinoic Acid Receptor-related Orphan Receptor α.<br>Journal of Biological Chemistry, 2010, 285, 15668-15673.                                                                                                                              | 3.4       | 98        |
| 18 | Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour. Nature Communications, 2014, 5, 5759.                                                                                                                                               | 12.8      | 98        |

LAURA A SOLT

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature, 2019, 576, 138-142.                                                                                                                                                          | 27.8 | 96        |
| 20 | A Liver-Selective LXR Inverse Agonist That Suppresses Hepatic Steatosis. ACS Chemical Biology, 2013, 8, 559-567.                                                                                                                                                | 3.4  | 92        |
| 21 | REV-ERBα Regulates TH17 Cell Development and Autoimmunity. Cell Reports, 2018, 25, 3733-3749.e8.                                                                                                                                                                | 6.4  | 78        |
| 22 | Interleukin-1-induced NF-κB Activation Is NEMO-dependent but Does Not Require IKKβ. Journal of<br>Biological Chemistry, 2007, 282, 8724-8733.                                                                                                                   | 3.4  | 75        |
| 23 | Suppression of atherosclerosis by synthetic REV-ERB agonist. Biochemical and Biophysical Research<br>Communications, 2015, 460, 566-571.                                                                                                                        | 2.1  | 73        |
| 24 | Identification of a Selective RORÎ <sup>3</sup> Ligand That Suppresses T <sub>H</sub> 17 Cells and Stimulates T<br>Regulatory Cells. ACS Chemical Biology, 2012, 7, 1515-1519.                                                                                  | 3.4  | 67        |
| 25 | Circadian rhythm–dependent and circadian rhythm–independent impacts of the molecular clock on<br>type 3 innate lymphoid cells. Science Immunology, 2019, 4, .                                                                                                   | 11.9 | 65        |
| 26 | ROR Inverse Agonist Suppresses Insulitis and Prevents Hyperglycemia in a Mouse Model of Type 1<br>Diabetes. Endocrinology, 2015, 156, 869-881.                                                                                                                  | 2.8  | 60        |
| 27 | The nuclear receptor REV-ERBα modulates Th17 cell-mediated autoimmune disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18528-18536.                                                                         | 7.1  | 60        |
| 28 | Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1. ACS<br>Chemical Biology, 2016, 11, 1795-1799.                                                                                                                | 3.4  | 59        |
| 29 | Ligand regulation of retinoic acid receptor-related orphan receptors: implications for development of novel therapeutics. Current Opinion in Lipidology, 2010, 21, 204-211.                                                                                     | 2.7  | 55        |
| 30 | Nuclear receptor RORα regulates pathologic retinal angiogenesis by modulating SOCS3-dependent<br>inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2015,<br>112, 10401-10406.                                      | 7.1  | 55        |
| 31 | Regulation of p53 Stability and Apoptosis by a ROR Agonist. PLoS ONE, 2012, 7, e34921.                                                                                                                                                                          | 2.5  | 54        |
| 32 | Genetic Dissection of the Functions of the Melanocortin-3 Receptor, a Seven-transmembrane<br>G-protein-coupled Receptor, Suggests Roles for Central and Peripheral Receptors in Energy<br>Homeostasis. Journal of Biological Chemistry, 2011, 286, 40771-40781. | 3.4  | 53        |
| 33 | Noncanonical NF-κB Signaling Is Limited by Classical NF-κB Activity. Science Signaling, 2014, 7, ra13.                                                                                                                                                          | 3.6  | 49        |
| 34 | G Protein-Coupled Receptor Ca <sup>2+</sup> -Linked Mitochondrial Reactive Oxygen Species Are<br>Essential for Endothelial/Leukocyte Adherence. Molecular and Cellular Biology, 2007, 27, 7582-7593.                                                            | 2.3  | 45        |
| 35 | A molecular switch regulating transcriptional repression and activation of PPARÎ <sup>3</sup> . Nature Communications, 2020, 11, 956.                                                                                                                           | 12.8 | 45        |
| 36 | NEMO-binding Domains of Both IKKα and IKKβ Regulate lκB Kinase Complex Assembly and Classical NF-κB<br>Activation. Journal of Biological Chemistry, 2009, 284, 27596-27608.                                                                                     | 3.4  | 40        |

LAURA A SOLT

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Splenic and Peritoneal B-1 Cells Differ in Terms of Transcriptional and Proliferative Features That<br>Separate Peritoneal B-1 from Splenic B-2 Cells. Cellular Immunology, 2001, 213, 62-71.          | 3.0  | 36        |
| 38 | CAR directs T cell adaptation to bile acids in the small intestine. Nature, 2021, 593, 147-151.                                                                                                        | 27.8 | 36        |
| 39 | LXR-Mediated Inhibition of CD4+ T Helper Cells. PLoS ONE, 2012, 7, e46615.                                                                                                                             | 2.5  | 31        |
| 40 | Development of novel NEMO-binding domain mimetics for inhibiting IKK/NF-κB activation. PLoS Biology, 2018, 16, e2004663.                                                                               | 5.6  | 29        |
| 41 | Genetic and pharmacological inhibition of the nuclear receptor RORα regulates TH17 driven inflammatory disorders. Nature Communications, 2021, 12, 76.                                                 | 12.8 | 27        |
| 42 | Structure of REV-ERBβ Ligand-binding Domain Bound to a Porphyrin Antagonist. Journal of Biological<br>Chemistry, 2014, 289, 20054-20066.                                                               | 3.4  | 22        |
| 43 | Metabolism of murine T <sub>H</sub> 17 cells: Impact on cell fate and function. European Journal of<br>Immunology, 2016, 46, 807-816.                                                                  | 2.9  | 22        |
| 44 | Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene<br>Expression. PLoS ONE, 2016, 11, e0151014.                                                         | 2.5  | 20        |
| 45 | Pharmacological modulation and genetic deletion of REV-ERBα and REV-ERBÎ <sup>2</sup> regulates dendritic cell development. Biochemical and Biophysical Research Communications, 2020, 527, 1000-1007. | 2.1  | 20        |
| 46 | RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis. FASEB Journal, 2017, 31, 4492-4502.                                                     | 0.5  | 18        |
| 47 | Distinct roles for REV-ERBα and REV-ERBβ in oxidative capacity and mitochondrial biogenesis in skeletal<br>muscle. PLoS ONE, 2018, 13, e0196787.                                                       | 2.5  | 18        |
| 48 | Pharmacological Targeting the REV-ERBs in Sleep/Wake Regulation. PLoS ONE, 2016, 11, e0162452.                                                                                                         | 2.5  | 15        |
| 49 | Th17 cells in Type 1 diabetes: a future perspective. Diabetes Management, 2015, 5, 247-250.                                                                                                            | 0.5  | 13        |
| 50 | Structural basis for heme-dependent NCoR binding to the transcriptional repressor REV-ERBβ. Science Advances, 2021, 7, .                                                                               | 10.3 | 13        |
| 51 | REV-ERBα regulates age-related and oxidative stress-induced degeneration in retinal pigment epithelium via NRF2. Redox Biology, 2022, 51, 102261.                                                      | 9.0  | 12        |
| 52 | REV-ERBÎ <sup>2</sup> is required to maintain normal wakefulness and the wake-inducing effect of dual REV-ERB<br>agonist SR9009. Biochemical Pharmacology, 2018, 150, 1-8.                             | 4.4  | 10        |
| 53 | Cutting Edge: Association with lκB Kinase β Regulates the Subcellular Localization of Homer3. Journal of<br>Immunology, 2010, 185, 2665-2669.                                                          | 0.8  | 7         |
| 54 | Structural and Biophysical Insights into the Ligand-Free Pitx2 Homeodomain and a Ring Dermoid of the<br>Cornea Inducing Homeodomain Mutant. Biochemistry, 2012, 51, 665-676.                           | 2.5  | 7         |

LAURA A SOLT

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Targeting Nuclear Receptors for TH17-Mediated Inflammation: REV-ERBerations of Circadian Rhythm<br>and Metabolism. Immunometabolism, 2022, 4, .                              | 1.6 | 5         |
| 56 | Identification of potent ROR $\hat{l}^2$ modulators: Scaffold variation. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3210-3215.                                    | 2.2 | 3         |
| 57 | Uncovering New Challenges in Targeting Glycolysis to Treat Th17 Cell-Mediated Autoimmunity.<br>Immunometabolism, 2021, 3, .                                                  | 1.6 | 3         |
| 58 | High throughput screening for compounds to the orphan nuclear receptor NR2F6. SLAS Discovery, 2022, 27, 242-248.                                                             | 2.7 | 3         |
| 59 | Discovery and Optimization of a Series of Sulfonamide Inverse Agonists for the Retinoic Acid<br>Receptor-Related Orphan Receptor-1±. Medicinal Chemistry, 2019, 15, 676-684. | 1.5 | 2         |
| 60 | Biased Signaling and Conformational Dynamics in Nuclear Hormone Receptors. , 2014, , 103-135.                                                                                |     | 1         |
| 61 | OMRT-14. Small molecule circadian clock compounds exhibit potential as a novel therapy paradigm for glioblastoma. Neuro-Oncology Advances, 2021, 3, ii9-ii9.                 | 0.7 | 0         |
| 62 | Abstract 439: REV-ERB–Mediated Regulation of Cholesterol Biosynthesis and Atherosclerosis.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .                | 2.4 | 0         |
| 63 | A Compass to Guide Insights into TH17 Cellular Metabolism and Autoimmunity. Immunometabolism, 2022, 4, .                                                                     | 1.6 | 0         |
| 64 | Abstract 545: Suppression of Atherosclerosis by Synthetic REV-ERB Agonist. Arteriosclerosis,<br>Thrombosis, and Vascular Biology, 2015, 35, .                                | 2.4 | 0         |