Feliu Maseras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1823770/publications.pdf

Version: 2024-02-01

294 papers 16,867 citations

16437 64 h-index 20343 116 g-index

315 all docs

315 docs citations

315 times ranked 11674 citing authors

#	Article	IF	CITATIONS
1	IMOMM: A new integratedab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. Journal of Computational Chemistry, 1995, 16, 1170-1179.	1.5	1,635
2	Proton Abstraction Mechanism for the Palladium-Catalyzed Intramolecular Arylation. Journal of the American Chemical Society, 2006, 128, 1066-1067.	6.6	698
3	Proton-Abstraction Mechanism in the Palladium-Catalyzed Intramolecular Arylation:Â Substituent Effects. Journal of the American Chemical Society, 2007, 129, 6880-6886.	6.6	509
4	Managing the Computational Chemistry Big Data Problem: The ioChem-BD Platform. Journal of Chemical Information and Modeling, 2015, 55, 95-103.	2.5	403
5	Direct Arylation of Arene Câ ⁻ 'H Bonds by Cooperative Action of NHCarbeneâ ⁻ 'Ruthenium(II) Catalyst and Carbonate via Proton Abstraction Mechanism. Journal of the American Chemical Society, 2008, 130, 1156-1157.	6.6	367
6	A DFT Study of the Full Catalytic Cycle of the Suzukiâ^'Miyaura Cross-Coupling on a Model System. Organometallics, 2006, 25, 3647-3658.	1.1	348
7	Transition Metal Polyhydrides:  From Qualitative Ideas to Reliable Computational Studies. Chemical Reviews, 2000, 100, 601-636.	23.0	341
8	Computational Characterization of the Role of the Base in the Suzukiâ [^] Miyaura Cross-Coupling Reaction. Journal of the American Chemical Society, 2005, 127, 9298-9307.	6.6	317
9	Computational Perspective on Pd-Catalyzed C–C Cross-Coupling Reaction Mechanisms. Accounts of Chemical Research, 2013, 46, 2626-2634.	7.6	306
10	Merging Sustainability with Organocatalysis in the Formation of Organic Carbonates by Using CO ₂ as a Feedstock. ChemSusChem, 2012, 5, 2032-2038.	3.6	283
11	Redox Non-innocent Ligand Controls Water Oxidation Overpotential in a New Family of Mononuclear Cu-Based Efficient Catalysts. Journal of the American Chemical Society, 2015, 137, 6758-6761.	6.6	266
12	[(NHC)Aul]-Catalyzed Formation of Conjugated Enones and Enals: An Experimental and Computational Study. Chemistry - A European Journal, 2007, 13, 6437-6451.	1.7	180
13	Câ^'C Reductive Elimination in Palladium Complexes, and the Role of Coupling Additives. A DFT Study Supported by Experiment. Journal of the American Chemical Society, 2009, 131, 3650-3657.	6.6	178
14	A General Mechanism for the Copper- and Silver-Catalyzed Olefin Aziridination Reactions: Concomitant Involvement of the Singlet and Triplet Pathways. Journal of the American Chemical Society, 2013, 135, 1338-1348.	6.6	160
15	A Valuable, Inexpensive Cul/N-Heterocyclic Carbene Catalyst for the Selective Diboration of Styrene. Chemistry - A European Journal, 2007, 13, 2614-2621.	1.7	156
16	Catecholborane Bound to Titanocene. Unusual Coordination of Ligand Ïf-Bonds. Journal of the American Chemical Society, 1996, 118, 10936-10937.	6.6	151
17	Experimental and Theoretical Investigations of New Dinuclear Palladium Complexes as Precatalysts for the Amination of Aryl Chlorides. Journal of the American Chemical Society, 2006, 128, 6376-6390.	6.6	148
18	Scope and Challenge of Computational Methods for Studying Mechanism and Reactivity in Homogeneous Catalysis. ACS Catalysis, 2019, 9, 6803-6813.	5.5	145

#	Article	IF	Citations
19	Application of the New "Integrated MO + MM―(IMOMM) Method to the Organometallic Reaction Pt(PR3)2+ H2(R = H, Me,t-Bu, and Ph). The Journal of Physical Chemistry, 1996, 100, 2573-2580.	2.9	142
20	Metal–Arene Interactions in Dialkylbiarylphosphane Complexes of Copper, Silver, and Gold. Chemistry - A European Journal, 2010, 16, 5324-5332.	1.7	142
21	Stereoselective and Versatile Preparation of Tri- and Tetrasubstituted Allylic Amine Scaffolds under Mild Conditions. Journal of the American Chemical Society, 2016, 138, 11970-11978.	6.6	142
22	Unraveling the Origin of Regioselectivity in Rhodium Diphosphine Catalyzed Hydroformylation. A DFT QM/MM Study. Journal of the American Chemical Society, 2001, 123, 7630-7637.	6.6	141
23	Computational study of the transmetalation process in the Suzuki–Miyaura cross-coupling of aryls. Journal of Organometallic Chemistry, 2006, 691, 4459-4466.	0.8	140
24	Catalytic Mechanism of Galactose Oxidase:Â A Theoretical Study. Journal of the American Chemical Society, 2000, 122, 8031-8036.	6.6	134
25	Bidentate phosphines as ligands in the palladium-catalyzed intramolecular arylation: the intermolecular base-assisted proton abstraction mechanism. Tetrahedron, 2008, 64, 6021-6029.	1.0	123
26	Theory Does Not Support an Osmaoxetane Intermediate in the Osmium-Catalyzed Dihydroxylation of Olefins. Journal of the American Chemical Society, 1996, 118, 11660-11661.	6.6	121
27	Computational Evidence of the Importance of Substituent Bulk on Agostic Interactions in Ir(H)2(PtBu2Ph)2+. Journal of the American Chemical Society, 1998, 120, 361-365.	6.6	121
28	Selective Homogeneous and Heterogeneous Gold Catalysis with Alkynes and Alkenes: Similar Behavior, Different Origin. ChemPhysChem, 2008, 9, 1624-1629.	1.0	119
29	Gold(I)-Catalyzed Intermolecular Hydroalkoxylation of Allenes: A DFT study. Organic Letters, 2009, 11, 2237-2240.	2.4	118
30	A Domino Process toward Functionally Dense Quaternary Carbons through Pd-Catalyzed Decarboxylative C(sp ³)–C(sp ³) Bond Formation. Journal of the American Chemical Society, 2018, 140, 3981-3987.	6.6	113
31	Computational approaches to asymmetric synthesis. New Journal of Chemistry, 2007, 31, 333.	1.4	108
32	Computational and Experimental Test of Steric Influence on Agostic Interactions:Â A Homologous Series for Ir(III). Journal of the American Chemical Society, 1999, 121, 97-106.	6.6	105
33	Calculation of Reaction Free Energies in Solution: A Comparison of Current Approaches. Journal of Physical Chemistry A, 2018, 122, 1392-1399.	1.1	101
34	A Critical Analysis of the Cyclic and Open Alternatives of the Transmetalation Step in the Stille Cross-Coupling Reaction. Journal of the American Chemical Society, 2006, 128, 14571-14578.	6.6	100
35	Protonation of transition-metal hydrides: a not so simple process. Chemical Society Reviews, 2009, 38, 957.	18.7	99
36	Theoretical Study on the Origin of Enantioselectivity in the Bis(dihydroquinidine)-3,6-pyridazine·Osmium Tetroxide-Catalyzed Dihydroxylation of Styrene. Journal of the American Chemical Society, 1999, 121, 1317-1323.	6.6	94

#	Article	IF	Citations
37	Transition metal catalysis by density functional theory and density functional theory/molecular mechanics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 375-385.	6.2	91
38	Inertness of the Arylâ^'F Bond toward Oxidative Addition to Osmium and Rhodium Complexes:  Thermodynamic or Kinetic Origin?. Journal of the American Chemical Society, 1998, 120, 12634-12640.	6.6	90
39	M–C bond strength to substituentsElectronic supplementary information (ESI) available: methods of calculation; Fig. S1: Comparison of calculated and experimental C–H bond dissociation energies for organic molecules; Table S1, comparison of calculated and experimental CO-stretching frequencies; Table S2, total energies, BDE for Re–C and H–C: Table S3, NPA charges a(C) and a(aryl) for the organic	2.2	89
40	tragments C6H6aC. Chemical Communications, 2003, . 490-491. Chemo-, Regio-, and Stereoselective Silver-Catalyzed Aziridination of Dienes: Scope, Mechanistic Studies, and Ring-Opening Reactions. Journal of the American Chemical Society, 2014, 136, 5342-5350.	6.6	89
41	Reactions of a Hexahydrideâ^'Osmium Complex with Aromatic Ketones:Â Câ^'H Activation versus Câ^'F Activation§. Organometallics, 2001, 20, 442-452.	1.1	88
42	Mechanism of the gold-catalyzed cyclopropanation of alkenes with 1,6-enynes. Chemical Science, 2011, 2, 141-149.	3.7	87
43	Microkinetic modeling in homogeneous catalysis. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1372.	6.2	85
44	Mechanism of Alkane Câ^'H Bond Activation by Copper and Silver Homoscorpionate Complexes. Organometallics, 2006, 25, 5292-5300.	1.1	84
45	Application of the natural population analysis to transition-metal complexes. Should the empty metal p orbitals be included in the valence space?. Chemical Physics Letters, 1992, 195, 500-504.	1.2	83
46	Oxidative Coupling Mechanisms: Current State of Understanding. ACS Catalysis, 2018, 8, 1161-1172.	5.5	83
47	Practical Implications of Boronâ€toâ€Zinc Transmetalation for the Catalytic Asymmetric Arylation of Aldehydes. Angewandte Chemie - International Edition, 2008, 47, 1098-1101.	7.2	82
48	Oxidative Additions of Aryl Halides to Palladium Proceed through the Monoligated Complex. ChemCatChem, 2013, 5, 3604-3609.	1.8	79
49	RuX(CO)(NO)L2and Ru(CO)(NO)L2+:Â Ru(0) or Ru(II) or In Between?. Journal of the American Chemical Society, 1997, 119, 8642-8651.	6.6	77
50	QM/MM methods in inorganic chemistry. Dalton Transactions, 2008, , 2911.	1.6	77
51	Palladium Round Trip in the Negishi Coupling of <i>trans</i> â€{PdMeCl(PMePh ₂) ₂] with ZnMeCl: An Experimental and DFT Study of the Transmetalation Step. Chemistry - A European Journal, 2010, 16, 8596-8599.	1.7	76
52	A Density Functional Study on the Effect of the Trans Axial Ligand of Cobalamin on the Homolytic Cleavage of the Coâ [^] C Bond. Journal of Physical Chemistry B, 2001, 105, 7564-7571.	1.2	74
53	Influence of Media and Homoconjugate Pairing on Transition Metal Hydride Protonation. An IR and DFT Study on Proton Transfer to CpRuH(CO)(PCy3). Journal of the American Chemical Society, 2003, 125, 7715-7725.	6.6	74
54	The IMOMM method opens the way for the accurate calculation of "real―transition metal complexes. Chemical Communications, 2000, , 1821-1827.	2.2	73

#	Article	IF	Citations
55	Computational Rationalization of the Dependence of the Enantioselectivity on the Nature of the Catalyst in the Vanadium-Catalyzed Oxidation of Sulfides by Hydrogen Peroxide. Journal of the American Chemical Society, 2005, 127, 3624-3634.	6.6	73
56	Synthesis of PCPâ€Supported Nickel Complexes and their Reactivity with Carbon Dioxide. Chemistry - A European Journal, 2012, 18, 6915-6927.	1.7	73
57	Brønsted Acid Catalyzed Morita–Baylis–Hillman Reaction: A New Mechanistic View for Thioureas Revealed by ESIâ€MS(/MS) Monitoring and DFT Calculations. Chemistry - A European Journal, 2009, 15, 12460-12469.	1.7	72
58	Copperâ€Catalyzed Nâ^F Bond Activation for Uniform Intramolecular Câ^H Amination Yielding Pyrrolidines and Piperidines. Angewandte Chemie - International Edition, 2019, 58, 8912-8916.	7.2	71
59	A Quantum Mechanics/Molecular Mechanics Study of the Highly Enantioselective Addition of Diethylzinc to Benzaldehyde Promoted by (R)-2-Piperidino-1,1,2-triphenylethanol. Journal of Organic Chemistry, 2000, 65, 7303-7309.	1.7	70
60	Towards Configurationally Stable [4]Helicenes: Enantioselective Synthesis of 12â€Substituted 7,8â€Dihydro[4]helicene Quinones. Chemistry - A European Journal, 2008, 14, 603-620.	1.7	70
61	Experimental and Theoretical Studies of Bonding and Oxidative Addition of Germanes and Silanes, EH4-nPhn(E = Si, Ge;n= 0â^3), to Mo(CO)(diphosphine)2. The First Structurally Characterized Germane Ïf Complex. Organometallics, 2003, 22, 5307-5323.	1.1	68
62	The Transmetalation Process in Suzuki–Miyaura Reactions: Calculations Indicate Lower Barrier via Boronate Intermediate. ChemCatChem, 2014, 6, 3132-3138.	1.8	68
63	Highly Modular POP Ligands for Asymmetric Hydrogenation: Synthesis, Catalytic Activity, and Mechanism. Chemistry - A European Journal, 2010, 16, 6495-6508.	1.7	67
64	The importance of conformational search: a test case on the catalytic cycle of the Suzuki–Miyaura cross-coupling. Theoretical Chemistry Accounts, 2011, 128, 639-646.	0.5	67
65	Mechanistic insights into the transmetalation step of a Suzuki–Miyaura reaction of 2(4)-bromopyridines: characterization of an intermediate. Tetrahedron, 2008, 64, 7437-7443.	1.0	66
66	Single Electron Transfer Steps in Water Oxidation Catalysis. Redefining the Mechanistic Scenario. ACS Catalysis, 2017, 7, 1712-1719.	5.5	66
67	Competitive and Selective Csp ³ Br versus Csp ² Br Bond Activation in Palladiumâ€Catalysed Suzuki Crossâ€Coupling: An Experimental and Theoretical Study of the Role of Phosphine Ligands. Chemistry - A European Journal, 2010, 16, 13390-13397.	1.7	65
68	Rationale for the sluggish oxidative addition of aryl halides to Au(<scp>i</scp>). Chemical Communications, 2014, 50, 1533-1536.	2.2	64
69	Computational Study with DFT and Kinetic Models on the Mechanism of Photoinitiated Aromatic Perfluoroalkylations. Organic Letters, 2015, 17, 2676-2679.	2.4	63
70	Cyclobutene vs 1,3-Diene Formation in the Gold-Catalyzed Reaction of Alkynes with Alkenes: The Complete Mechanistic Picture. Journal of the American Chemical Society, 2017, 139, 10302-10311.	6.6	63
71	Functional-Group-Tolerant, Silver-Catalyzed N–N Bond Formation by Nitrene Transfer to Amines. Journal of the American Chemical Society, 2017, 139, 2216-2223.	6.6	62
72	Theoretical Study of the Hydrogen Exchange Coupling in the Metallocene Trihydride Complexes [(C5H5)2MH3]n+(M = Mo, W,n= 1; M = Nb, Ta,n= 0). Journal of the American Chemical Society, 1996, 118, 4617-4621.	6.6	60

#	Article	IF	Citations
73	The role of cyclobutenes in gold(i)-catalysed skeletal rearrangement of 1,6-enynes. Organic and Biomolecular Chemistry, 2012, 10, 6105.	1.5	60
74	Computational Study on the Mechanism of the Acceleration of 1,3-Dipolar Cycloaddition inside Cucurbit[6]uril. ACS Catalysis, 2015, 5, 2445-2451.	5.5	60
75	Amine conformational change and spin conversion induced by metal-assisted ligand oxidation: from the seven-coordinate iron(II)–TPAA complex to the two oxidized iron(II)–(py)3tren isomers. Characterization, crystal structures, and density functional study. Inorganica Chimica Acta, 2000, 297. 338-350.	1.2	59
76	Equilibria between \hat{l}_{\pm} - and \hat{l}^2 -Agostic Stabilized Rotamers of Secondary Alkyl Niobium Complexes. Journal of the American Chemical Society, 2001, 123, 6000-6013.	6.6	59
77	Experimental and Computational Studies of Hydrogen Bonding and Proton Transfer to [Cp*Fe(dppe)H]. Chemistry - A European Journal, 2005, 11, 873-888.	1.7	58
78	Hydride Exchange Processes in the Coordination Sphere of Transition Metal Complexes:  The OsH3(BH4)(PR3)2 System. Journal of the American Chemical Society, 1996, 118, 8388-8394.	6.6	57
79	Synthesis and Spectroscopic Properties of Dihydrogen Isocyanide Niobocene [Nb(η5-C5H4SiMe3)2(η2-H2)(CNR)]+Complexes. Experimental and Theoretical Study of the Blocked Rotation of a Coordinated Dihydrogen. Journal of the American Chemical Society, 1997, 119, 6107-6114.	6.6	57
80	Density Functional Study on the Mechanism of the Vanadium-Catalyzed Oxidation of Sulfides by Hydrogen Peroxide. Journal of Organic Chemistry, 2003, 68, 4265-4274.	1.7	57
81	A DFT Study of the Effect of the Ligands in the Reductive Elimination from Palladium Bis(allyl) Complexes. Organometallics, 2010, 29, 4983-4991.	1.1	57
82	Catalytic cross-coupling of diazo compounds with coinage metal-based catalysts: an experimental and theoretical study. Dalton Transactions, 2013, 42, 4132.	1.6	57
83	Toward a mechanistic understanding of oxidative homocoupling: the Glaser–Hay reaction. Catalysis Science and Technology, 2014, 4, 4200-4209.	2.1	57
84	Dynamic Behavior in Solution of the <i>Trans</i> à€Hydridodihydrogen Complex [OsHCl(<i>n</i> ² â€H ₂)(CO)(P <i>i</i> P< ₃) ₂): Ab Initio and NMR Studies. Chemistry - A European Journal, 1996, 2, 815-825.	1.7	56
85	Bonding in Elongated Dihydrogen Complexes. Theoretical Analysis of the Electron Density in [MLn(H···H)] Species. Organometallics, 1996, 15, 2947-2953.	1.1	55
86	Lightâ€Driven Enantioselective Organocatalytic βâ€Benzylation of Enals. Angewandte Chemie - International Edition, 2017, 56, 3304-3308.	7.2	55
87	A theoretical analysis of a classic example of supramolecular catalysis. Chemical Communications, 2007, , 748-750.	2.2	54
88	On the Origin of \hat{l}_{\pm} - and \hat{l}^2 -Agostic Distortions in Early-Transition-Metal Alkyl Complexes. Organometallics, 2008, 27, 1128-1134.	1.1	54
89	Why Is the Suzukiâ^'Miyaura Cross-Coupling of sp ³ Carbons in α-Bromo Sulfoxide Systems Fast and Stereoselective? A DFT Study on the Mechanism. Journal of Organic Chemistry, 2009, 74, 4049-4054.	1.7	54
90	Water oxidation electrocatalysis using ruthenium coordination oligomers adsorbed on multiwalled carbon nanotubes. Nature Chemistry, 2020, 12, 1060-1066.	6.6	54

#	Article	IF	CITATIONS
91	Elucidating the Mechanism of Aryl Aminations Mediated by NHC-Supported Nickel Complexes: Evidence for a Nonradical Ni(0)/Ni(II) Pathway. ACS Catalysis, 2018, 8, 3733-3742.	5.5	53
92	Oxidative Addition of Group 14 Element Hydrido Compounds to OsH2(η2-CH2CHEt)(CO)(PiPr3)2: Synthesis and Characterization of the First Trihydridoâr'Silyl, Trihydridoâr'Germyl, and Trihydridoâr'Stannyl Derivatives of Osmium(IV). Inorganic Chemistry, 1996, 35, 1250-1256.	1.9	52
93	Critical Role of the Correlation Functional in DFT Descriptions of an Agostic Niobium Complex. Journal of Chemical Theory and Computation, 2007, 3, 1329-1336.	2.3	52
94	Mechanistic Studies on Gold-Catalyzed Direct Arene C–H Bond Functionalization by Carbene Insertion: The Coinage-Metal Effect. Organometallics, 2017, 36, 172-179.	1.1	52
95	The role of computational results databases in accelerating the discovery of catalysts. Nature Catalysis, 2018, 1, 809-810.	16.1	52
96	Molecular hydrogen complexes with a hydride ligand. An ab initio study on the iron hydride, [Fe(PR3)4H(H2)]+, system. Journal of the American Chemical Society, 1991, 113, 2879-2884.	6.6	51
97	Competition between Steric and Electronic Control of Structure in Ru(CO)2L2L†Complexes. Organometallics, 1997, 16, 1979-1993.	1.1	51
98	Crucial Role of Anions on the Deprotonation of the Cationic Dihydrogen Complex trans-[FeH(\hat{l} -2-H2)(dppe)2]+. Journal of the American Chemical Society, 2007, 129, 6608-6618.	6.6	51
99	An unprecedented α-C–C agostic interaction in a cyclopropyl tris(pyrazolyl)boratoniobium complexElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b3/b300324h/. Chemical Communications, 2003, , 876-877.	2.2	50
100	Phosphine and solvent effects on oxidative addition of CH3Br to Pd(PR3) and Pd(PR3)2 complexes. Dalton Transactions, 2011, 40, 11089.	1.6	50
101	C–H and C–C agostic interactions in cycloalkyl tris(pyrazolyl)boratoniobium complexes. Dalton Transactions, 2003, , 4057-4064.	1.6	49
102	The Mechanism of the Catalytic Functionalization of Haloalkanes by Carbene Insertion: An Experimental and Theoretical Study. Organometallics, 2009, 28, 5968-5981.	1.1	49
103	Density Functional Study on the Effect of the trans Axial Ligand ofB12Cofactors on the Heterolytic Cleavage of the Coâ ⁻³ C Bond. Journal of Physical Chemistry B, 2003, 107, 306-315.	1.2	48
104	Intramolecular atom exchange between molecular hydrogen and hydride ligands in cis-[Fe(PR3)4H(H2)]+ complexes. An ab initio theoretical study. Journal of the American Chemical Society, 1992, 114, 2922-2928.	6.6	47
105	Stabilization of the adenosyl radical in coenzyme B12 – a theoretical study. Chemical Physics Letters, 2004, 386, 174-178.	1.2	47
106	Computational study on the difference between the Co–C bond dissociation energy in methylcobalamin and adenosylcobalamin. Journal of Biological Inorganic Chemistry, 2005, 10, 509-517.	1.1	47
107	Mechanism of Side Reactions in Alkane CH Bond Functionalization by Diazo Compounds Catalyzed by Ag and Cu Homoscorpionate Complexes—A DFT Study. ChemCatChem, 2011, 3, 1646-1652.	1.8	47
108	Preparation and Characterization of Osmiumâ [^] Stannyl Polyhydrides:Â d4â [^] d2Oxidative Addition of Neutral Molecules in a Late Transition Metal. Organometallics, 2003, 22, 2087-2096.	1.1	46

#	Article	IF	CITATIONS
109	Halide Abstraction Competes with Oxidative Addition in the Reactions of Aryl Halides with [Ni(PMe _n Ph _(3â'<i>n</i>)) ₄]. Chemistry - A European Journal, 2017, 23, 16728-16733.	1.7	46
110	Agostic interactions in alkyl derivatives of sterically hindered tris(pyrazolyl)borate complexes of niobium. Coordination Chemistry Reviews, 2009, 253, 635-646.	9.5	45
111	Reaction of Alkynes and Azides: Not Triazoles Through Copper–Acetylides but Oxazoles Through Copper–Nitrene Intermediates. Chemistry - A European Journal, 2014, 20, 3463-3474.	1.7	45
112	Cooperative Reductive Elimination: The Missing Piece in the Oxidativeâ€Coupling Mechanistic Puzzle. Angewandte Chemie - International Edition, 2016, 55, 2764-2767.	7.2	45
113	Ab Initio MO and MM Study on the Nature of [Ru(P-P)2"H3"]+ (P-P = dppb, diop, dpmb, dppe) Complexes. Organometallics, 1994, 13, 4008-4016.	1.1	44
114	On the Feasibility of Nickel-Catalyzed Trifluoromethylation of Aryl Halides. Organometallics, 2014, 33, 6531-6543.	1.1	43
115	The reaction of the unsaturated rhenium fragment $\{Re(\hat{l}\cdot 5\text{-}C5Me5)(CO)2\}$ with 1,4-difluorobenzene. Thermal intramolecular conversion of a rhenium (difluorophenyl)(hydride) to $Re(\hat{l}\cdot 2\text{-}C6H4F2)$ and a [1,4]-metallotropic shift. Dalton Transactions RSC, 2001, , 1452-1461.	2.3	42
116	Mechanism of the [(NHC)Aul]-Catalyzed Rearrangement of Allylic Acetates. A DFT Study. Organic Letters, 2009, 11, 81-84.	2.4	42
117	Diastereodivergent Enantioselective $[8+2]$ Annulation of Tropones and Enals Catalyzed by N-Heterocyclic Carbenes. Organic Letters, 2019, 21, 3187-3192.	2.4	42
118	Hybrid quantum-mechanical and molecular mechanics study of Cu atoms deposition on SiO2 surface defects. Chemical Physics Letters, 1998, 294, 611-618.	1.2	41
119	Applications of Hybrid DFT/Molecular Mechanics to Homogeneous Catalysis. Structure and Bonding, 2004, , 117-150.	1.0	41
120	Copper-Catalyzed Borylative Ring Closing C–C Coupling toward Spiro- and Dispiroheterocycles. ACS Catalysis, 2018, 8, 2833-2838.	5.5	40
121	Measuring the Relative Reactivity of the Carbon–Hydrogen Bonds of Alkanes as Nucleophiles. Angewandte Chemie - International Edition, 2018, 57, 13848-13852.	7.2	40
122	Theoretical modeling of the heme group with a hybrid QM/MM method. Journal of Computational Chemistry, 2000, 21, 282-294.	1.5	39
123	The Effect of the "Inert―Counteranions in the Deprotonation of the Dihydrogen Complextrans-[FeH(η2·H2)(dppe)2]+: Kinetic and Theoretical Studies. Journal of the American Chemical Society, 2004, 126, 2320-2321.	6.6	39
124	Mechanism of the Base-Assisted Displacement of Chloride by Alcohol in Sulfinyl Derivatives. Journal of Organic Chemistry, 2006, 71, 6388-6396.	1.7	39
125	Câ^'H Bond Activation of Benzene by Unsaturated Î- ² -Cyclopropene and Î- ² -Benzyne Complexes of Niobium. Journal of the American Chemical Society, 2010, 132, 14239-14250.	6.6	39
126	A computational view on the reactions of hydrocarbons with coinage metal complexes. Journal of Organometallic Chemistry, 2015, 784, 2-12.	0.8	39

#	Article	IF	CITATIONS
127	Thermally Activated Site Exchange and Quantum Exchange Coupling Processes in Unsymmetrical Trihydride Osmium Compounds. Inorganic Chemistry, 1999, 38, 1814-1824.	1.9	38
128	Computational characterization of a mechanism for the copper-catalyzed aerobic oxidative trifluoromethylation of terminal alkynes. Chemical Communications, 2013, 49, 10486.	2.2	37
129	An Unusual Example of Hypervalent Silicon: A Fiveâ€Coordinate Silyl Group Bridging Two Palladium or Nickel Centers through a Nonsymmetrical Fourâ€Center Twoâ€Electron Bond. Angewandte Chemie - International Edition, 2014, 53, 1103-1108.	7.2	37
130	Mechanistic and Computational Studies of the Atom Transfer Radical Addition of CCl ₄ to Styrene Catalyzed by Copper Homoscorpionate Complexes. Inorganic Chemistry, 2011, 50, 2458-2467.	1.9	36
131	Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie - International Edition, 2017, 56, 12842-12847.	7.2	36
132	Computational Characterization of the Mechanism for Coinage-Metal-Catalyzed Carboxylation of Terminal Alkynes. Journal of Organic Chemistry, 2014, 79, 11981-11987.	1.7	35
133	Site Preference Energetics, Fluxionality, and Intramolecular Mâ^'H···Hâ^'N Hydrogen Bonding in a Dodecahedral Transition Metal Polyhydrideâ€. Inorganic Chemistry, 1997, 36, 5505-5511.	1.9	34
134	Different van der Waals radii for organic and inorganic halogen atoms: a significant improvement in IMOMM performance. Theoretical Chemistry Accounts, 1997, 96, 146-150.	0.5	34
135	Opposing steric and electronic contributions in OsCl2H2(PPr3i)2. A theoretical study of an unusual structure. New Journal of Chemistry, 1998, 22, 5-9.	1.4	34
136	Polyene Cyclization by a Double Intramolecular Heck Reaction. A DFT Study. Organometallics, 2004, 23, 2784-2796.	1.1	33
137	Hybrid Quantum Mechanics/Molecular Mechanics Methods in Transition Metal Chemistry. Topics in Organometallic Chemistry, 1999, , 165-191.	0.7	33
138	Copper(I)â^'Olefin Complexes: The Effect of the Trispyrazolylborate Ancillary Ligand in Structure and Reactivity. Organometallics, 2010, 29, 3481-3489.	1.1	32
139	DFT Rationalization of the Diverse Outcomes of the Iodine(III)-Mediated Oxidative Amination of Alkenes. Chemistry - A European Journal, 2016, 22, 7545-7553.	1.7	32
140	[MLn(SiR3)(η2-Hâ^'H)] or [MLn(H)(η2-Hâ^'SiR3)]? An ab Initio MO Study on [OsCl(CO)(PR3)2"H2SiR3â€] Complexes. Organometallics, 1996, 15, 1218-1222.	1.1	31
141	Synthesis and reactivity of [Oî€sH{C6H4(CHCHH) }(CO)(PPri3)2] and the formato compounds [Os{(E )-CHCHPh}(Î-2-O 2CH)(CO)(PPri3)2] and [OsH(Î-2-O2CH)(CO)(PPri3) 2]*. Journal of the Chemical Society Dalton Transactions, 1997, , 181-192.	1.1	31
142	Performance of the semiempirical PM3 (tm) method in the geometry optimization of transition metal complexes. Journal of Computational Chemistry, 2000, 21, 562-571.	1.5	31
143	Hybrid quantum mechanics/molecular mechanics studies of the active site of the blue copper proteins amicyanin and rusticyanin. Inorganica Chimica Acta, 2001, 324, 21-26.	1.2	30
144	Dihydrogen to Dihydride Isomerization Mechanism in [(C5Me5)FeH2(Ph2PCH2CH2PPh2)]+ through the Experimental and Theoretical Analysis of Kinetic Isotope Effects. Inorganic Chemistry, 2006, 45, 10248-10262.	1.9	30

#	Article	IF	CITATIONS
145	Factors affecting imine coordination in (iminoterpyridine)MX2(M = Fe, Co, Ni, Zn): synthesis, structures, DFT calculations and ethylene oligomerisation studies. New Journal of Chemistry, 2007, 31, 75-85.	1.4	30
146	Palladium-Catalyzed Aerobic Homocoupling of Alkynes: Full Mechanistic Characterization of a More Complex Oxidase-Type Behavior. ACS Catalysis, 2018, 8, 7495-7506.	5 . 5	30
147	Theoretical Evaluation of Steric Effects in [ReH5(PR3)2(SiR3)2] Complexes with the IMOMM Method. Inorganic Chemistry, 1996, 35, 6401-6405.	1.9	29
148	Observing and modelling energetically close α- and β-carbon–hydrogen agostic interactions in an isopropyl tris(pyrazolyl)boratoniobium complex. Chemical Communications, 1998, , 2011-2012.	2.2	29
149	A DFT/MM analysis of the effect of ligand substituents on asymmetric hydrogenation catalyzed by rhodium complexes with phosphine–phosphinite ligands. Canadian Journal of Chemistry, 2009, 87, 1273-1279.	0.6	29
150	Mechanistic Study of Amine to Imine Oxidation in a Dinuclear Cu(II) Complex Containing an Octaaza Dinucleating Ligand. Inorganic Chemistry, 2010, 49, 5977-5985.	1.9	29
151	Cis,trans,cis or All-cis Geometry in d0Octahedral Dioxo Complexes. An IMOMM Study of the Role of Steric Effects. Inorganic Chemistry, 1998, 37, 3321-3325.	1.9	28
152	Silyl, Hydrido-Silylene, or Other Bonding Modes: Â Some Unusual Structures of [(dhpe)Pt(SiHR2)]+(dhpe) Tj ETC Calculations. Inorganic Chemistry, 2002, 41, 7105-7112.	Qq0 0 0 rgE 1.9	3T /Overlock 1 28
153	Mechanism for Hydride-Assisted Rearrangement from Ethylidene to Ethylene in Iridium Cationic Complexes. Organometallics, 2010, 29, 2040-2045.	1.1	28
154	Computational Characterization of the Mechanism for the Oxidative Coupling of Benzoic Acid and Alkynes by Rhodium/Copper and Rhodium/Silver Systems. Chemistry - A European Journal, 2018, 24, 12383-12388.	1.7	28
155	Theoretical Characterization of an Intermediate for the [3 + 2] Cycloaddition Mechanism in the Bis(dihydroxy- quinidine)â^3,6-Pyridazine·Osmium Tetroxide-Catalyzed Dihydroxylation of Styrene. Journal of Organic Chemistry, 1997, 62, 7892-7894.	1.7	27
156	DFT modeling of reactivity in an ionic liquid: How many ion pairs?. Journal of Computational Chemistry, 2008, 29, 892-899.	1.5	27
157	Computationally Guided Design of a Readily Assembled Phosphite–Thioether Ligand for a Broad Range of Pd-Catalyzed Asymmetric Allylic Substitutions. ACS Catalysis, 2018, 8, 3587-3601.	5.5	27
158	Four Oxidation States in a Single Photoredox Nickelâ€Based Catalytic Cycle: A Computational Study. Angewandte Chemie - International Edition, 2019, 58, 3898-3902.	7.2	27
159	Phosphine Dissociation Mediates Câ^'H Cleavage of Fluoroarenes by OsH(C6H5)(CO)(PtBu2Me)2. Journal of the American Chemical Society, 1999, 121, 10895-10907.	6.6	26
160	Some critical issues in the application of quantum mechanics/molecular mechanics methods to the study of transition metal complexes. Faraday Discussions, 2003, 124, 429-441.	1.6	26
161	Câ°'C Coupling Constants, JCC, Are Reliable Probes for α-Câ°'C Agostic Structures. Organometallics, 2009, 28, 940-943.	1.1	26
162	Pdâ€Catalysed Mono―and Dicarbonylation of Aryl lodides: Insights into the Mechanism and the Selectivity. Chemistry - A European Journal, 2014, 20, 10982-10989.	1.7	26

#	Article	IF	Citations
163	Computational Characterization of the Origin of Selectivity in Cycloaddition Reactions Catalyzed by Phosphoric Acid Derivatives. Chemistry - an Asian Journal, 2016, 11, 411-416.	1.7	25
164	Intermolecular Allene Functionalization by Silver-Nitrene Catalysis. Journal of the American Chemical Society, 2020, 142, 13062-13071.	6.6	25
165	The Challenge of Reproducing with Calculations Raw Experimental Kinetic Data for an Organic Reaction. Organic Letters, 2020, 22, 2873-2877.	2.4	25
166	Analysis of solvent effect on SN2 reactions by different theoretical models. Journal of Physical Organic Chemistry, 1989, 2, 611-622.	0.9	24
167	Theoretical and Synthetic Studies on Dihaptoacyl and \hat{l}^2 -Agostic Acyl Complexes of Molybdenum. Organometallics, 1999, 18, 3294-3305.	1.1	24
168	Computational QM/MM study on the structure and energetics of species involved in the activation of the Câ \in "H and Câ \in "S bonds of thiophene by Cp*RhPMe3. New Journal of Chemistry, 2004, 28, 625-630.	1.4	24
169	A QM/MM Study of the Asymmetric Dihydroxylation of Terminal Aliphaticn-Alkenes with OsO4â<(DHQD)2PYDZ: Enantioselectivity as a Function of Chain Length. Chemistry - A European Journal, 2005, 11, 1017-1029.	1.7	24
170	Dihydrogen Formation in a Trihydride Metallocene and Its Elimination, Both Assisted by Lewis Acids: The [Cp2NbH3]+BH3 System. Angewandte Chemie International Edition in English, 1997, 36, 265-266.	4.4	23
171	Chiral transition-metal complexes as Brønsted-acid catalysts for the asymmetric Friedel–Crafts hydroxyalkylation of indoles. Dalton Transactions, 2014, 43, 11260-11268.	1.6	23
172	Functionalization of C _{<i>n</i>} H _{2<i>n</i>+2} Alkanes: Supercritical Carbon Dioxide Enhances the Reactivity towards Primary Carbonâ€"Hydrogen Bonds. ChemCatChem, 2015, 7, 3254-3260.	1.8	23
173	Mechanistic Investigation of Iridium-Catalyzed Câ€"H Borylation of Methyl Benzoate: Ligand Effects in Regioselectivity and Activity. Organometallics, 2016, 35, 3221-3226.	1.1	23
174	Steric effects determine the mechanisms of reactions between bis(N-heterocyclic carbene)-nickel(0) complexes and aryl halides. Chemical Communications, 2018, 54, 10646-10649.	2.2	23
175	Ab initio molecular orbital characterization of the [Os(PR3)3"H5"]+ complex. Journal of the American Chemical Society, 1993, 115, 8313-8320.	6.6	22
176	Binding of dioxygen in a picket-fence porphyrin complex of iron. A theoretical QM/MM study. New Journal of Chemistry, 1998, 22, 327-322.	1.4	22
177	Breaking an electronically preferred symmetry by steric effects in a series of [Ir(biph)X(QR3)2] compounds (X=Cl or I, Q=P or As). New Journal of Chemistry, 1998, 22, 1493-1498.	1.4	22
178	Electronic against steric effects in distorted amides. Computational and Theoretical Chemistry, 2003, 632, 131-144.	1.5	22
179	Synthesis and Computational Studies of Palladium(I) Dimers Pd2X2(PtBu2Ph)2(X = Br, I):Â Phenyl versus Halide Bridging Modes. Organometallics, 2006, 25, 5990-5995.	1.1	22
180	Silverâ€Catalyzed Functionalization of Esters by Carbene Transfer: The Role of Ylide Zwitterionic Intermediates. ChemCatChem, 2014, 6, 2206-2210.	1.8	22

#	Article	IF	CITATIONS
181	Computational characterization of the mechanism for the light-driven catalytic trichloromethylation of acylpyridines. Organic and Biomolecular Chemistry, 2017, 15, 8641-8647.	1.5	22
182	Four-Electron Reduction of Diazo Compounds at a Single Tungsten Metal Center:Â A Theoretical Study of the Mechanism. Journal of the American Chemical Society, 1998, 120, 6598-6602.	6.6	21
183	The Nature of Mâ^'B Versus Mâ•B Bonds in Cationic Terminal Borylene Complexes: Structure and Energy Analysis in the Borylene Complexes $[(\hat{l}\cdot 5-C5H5)(CO)2M\{B(\hat{l}\cdot 5-C5Me5)\}]+, [(\hat{l}\cdot 5-C5H5)(CO)2M(BMes)]+, and [(\hat{l}\cdot 5-C5H5)(CO)2M(BNMe2)]+ (M = Fe, Ru, Os). Organometallics, 2009, 28, 6442-6449.$	1.1	21
184	Substitution Reactions in Dinuclear Ru-Hbpp Complexes: an Evaluation of Through-Space Interactions. Inorganic Chemistry, 2012, 51, 1889-1901.	1.9	21
185	Searching for Hidden Descriptors in the Metal–Ligand Bond through Statistical Analysis of Density Functional Theory (DFT) Results. Inorganic Chemistry, 2018, 57, 14660-14670.	1.9	21
186	New Vistas in Transmetalation with Discrete "AgCF 3 ―Species: Implications in Pdâ€Mediated Trifluoromethylation Reactions. Chemistry - A European Journal, 2018, 24, 11895-11898.	1.7	21
187	The diverse mechanisms for the oxidative addition of C–Br bonds to Pd(PR ₃) and Pd(PR ₃) ₂ complexes. Dalton Transactions, 2019, 48, 16242-16248.	1.6	21
188	Exploring the Role of Coinage Metalates in Trifluoromethylation: A Combined Experimental and Theoretical Study. Chemistry - A European Journal, 2019, 25, 9390-9394.	1.7	21
189	Synthesis and Characterization of Mixed-Phosphine Osmium Polyhydrides:Â Hydrogen Delocalization in [OsH5P3]+Systems. Organometallics, 2001, 20, 5297-5309.	1.1	20
190	Throughâ€6pace Ligand Interactions in Enantiomeric Dinuclear Ru Complexes. Chemistry - A European Journal, 2010, 16, 7965-7968.	1.7	20
191	Mild, Reversible Reaction of Iridium(III) Amido Complexes with Carbon Dioxide. Inorganic Chemistry, 2012, 51, 9683-9693.	1.9	20
192	Two Copper-Carbenes from One Diazo Compound. Journal of the American Chemical Society, 2021, 143, 4837-4843.	6.6	20
193	An oscillating C22? unit inside a copper rectangleElectronic supplementary information (ESI) available: NMR spectra and computational details. See http://www.rsc.org/suppdata/cc/b3/b301842c/. Chemical Communications, 2003, , 1260.	2.2	19
194	Lightâ€Driven Enantioselective Organocatalytic βâ€Benzylation of Enals. Angewandte Chemie, 2017, 129, 3352-3356.	1.6	19
195	ONIOM(QM:AMOEBA09) Study on Binding Energies and Binding Preference of OH, HCO, and CH ₃ Radicals on Hexagonal Water Ice (I _h). Journal of Physical Chemistry C, 2017, 121, 15223-15232.	1.5	19
196	Copper-mediated reduction of azides under seemingly oxidising conditions: catalytic and computational studies. Catalysis Science and Technology, 2018, 8, 5763-5773.	2.1	19
197	Theoretical study of the reaction mechanism of the uncatalyzed epoxidation of alkenes by iodosylbenzeneElectronic supplementary information (ESI) available: B3LYP optimized geometries (Cartesian coordinates) and total energies for compounds 1 to 9. See http://www.rsc.org/suppdata/ni/b2/b203861g/, New Journal of Chemistry, 2003, 27, 811-817.	1.4	18
198	Base-Catalyzed Inversion of Chiral Sulfur Centers. A Computational Study. Organic Letters, 2004, 6, 2197-2200.	2.4	18

#	Article	IF	CITATIONS
199	Unexpected Influence of the Counteranion in the κ2 vs κ3 Hapticity of Polydentate N-Donor Ligands in [RhI(N-ligand)L2]+ Complexes. Organometallics, 2004, 23, 5530-5539.	1.1	18
200	How does the Achiral Base Decide the Stereochemical Outcome in the Dynamic Kinetic Resolution of Sulfinyl Chlorides? A Computational Study. Advanced Synthesis and Catalysis, 2007, 349, 2103-2110.	2.1	18
201	DFT/MM Study on Copperâ€Catalyzed Cyclopropanation – Enantioselectivity with No Enthalpy Barrier. European Journal of Organic Chemistry, 2008, 2008, 5614-5621.	1.2	18
202	Structural Analysis of Zincocenes with Substituted Cyclopentadienyl Rings. Chemistry - A European Journal, 2009, 15, 924-935.	1.7	18
203	Quantum mechanics/molecular mechanics methods can be more accurate than full quantum mechanics in systems involving dispersion correlations. Physical Chemistry Chemical Physics, 2011, 13, 10520.	1.3	18
204	A DFT-based mechanistic proposal for the light-driven insertion of dioxygen into Pt(ii)–C bonds. Chemical Science, 2018, 9, 5039-5046.	3.7	18
205	Expanding the Range of Force Fields Available for ONIOM Calculations: The SICTWO Interface. Journal of Chemical Information and Modeling, 2018, 58, 1828-1835.	2.5	18
206	A Quantitative Model for Alkane Nucleophilicity Based on Câ^'H Bond Structural/Topological Descriptors. Angewandte Chemie - International Edition, 2020, 59, 3112-3116.	7.2	18
207	Unexpected Nickel Complex Speciation Unlocks Alternative Pathways for the Reactions of Alkyl Halides with dppf-Nickel(0). ACS Catalysis, 2020, 10, 10717-10725.	5.5	18
208	An ab initio molecular orbital study of the osmium complex [Os(PR3)3H4] system. Peeking into the peculiarities of seven-coordination. Journal of the American Chemical Society, 1993, 115, 10974-10980.	6.6	17
209	2H-T1 Relaxation and Deuterium Quadrupole Coupling Constants in Transition Metall-2-D2 Complexes. Chemistry - A European Journal, 1999, 5, 3318-3325.	1.7	17
210	[(C5H4MeEt)Ir(PPh3)2]+: an agostic C–C bond or a close metal–ligand contact?. Inorganica Chimica Acta, 2004, 357, 345-346.	1.2	17
211	Oxidative dehydrogenation of an amine group of a macrocyclic ligand in the coordination sphere of a Cull complex. Dalton Transactions, 2009, , 6013.	1.6	17
212	Aromatic versus Benzylic CH Bond Activation of Alkylaromatics by a Transient Î- ² -Cyclopropene Complex. Organometallics, 2011, 30, 3999-4007.	1,1	17
213	Understanding Ball Milling Mechanochemical Processes with DFT Calculations and Microkinetic Modeling. ChemSusChem, 2021, 14, 2763-2768.	3.6	17
214	Unexpected Coexistence of Isomeric Forms and Unusual Structures of Ru(CO)2L3â€−. Inorganic Chemistry, 1996, 35, 7468-7469.	1.9	16
215	\hat{l}^2 -H Abstraction/1,3-CH Bond Addition as a Mechanism for the Activation of CH Bonds at Early Transition Metal Centers. Organometallics, 2014, 33, 7270-7278.	1.1	16
216	Catalytic Copper-Mediated Ring Opening and Functionalization of Benzoxazoles. ACS Catalysis, 2014, 4, 4215-4222.	5.5	16

#	Article	IF	CITATIONS
217	Theoretical Study of the Effect of Lewis Acids on Dihydrogen Elimination from Niobocene Trihydrides. Chemistry - A European Journal, 1999, 5, 1166-1171.	1.7	15
218	A Computational Study on the Role of Chiral <i>N</i> àâ€Oxides in Enantioselective Pauson–Khand Reactions. Chemistry - A European Journal, 2011, 17, 10050-10057.	1.7	15
219	Enantioselective Synthesis of Aminodiols by Sequential Rhodiumâ€Catalysed Oxyamination/Kinetic Resolution: Expanding the Substrate Scope of Amidineâ€Based Catalysis. Chemistry - A European Journal, 2018, 24, 4635-4642.	1.7	15
220	Computational Description of a Huisgen Cycloaddition Inside a Selfâ€Assembled Nanocapsule. European Journal of Organic Chemistry, 2018, 2018, 2103-2109.	1.2	14
221	Accelerated Ru–Cu Trinuclear Cooperative CⰒH Bond Functionalization of Carbazoles: A Kinetic and Computational Investigation. Chemistry - A European Journal, 2018, 24, 15178-15184.	1.7	14
222	Redefining the Mechanistic Scenario of Carbonâ^'Sulfur Nucleophilic Coupling via Highâ€Valent Cp*Co ^{IV} Species. Angewandte Chemie - International Edition, 2021, 60, 11217-11221.	7.2	14
223	Vinyl Acetate Synthesis on Homogeneous and Heterogeneous Pd-Based Catalysts: A Theoretical Analysis on the Reaction Mechanisms. Journal of Physical Chemistry A, 2009, 113, 11758-11762.	1.1	13
224	Cooperative Reductive Elimination: The Missing Piece in the Oxidativeâ€Coupling Mechanistic Puzzle. Angewandte Chemie, 2016, 128, 2814-2817.	1.6	13
225	Eine Kupferâ€katalysierte Nâ€Fâ€Bindungsaktivierung fýr die einheitliche intramolekulare Câ€Hâ€Aminierung z Pyrrolidinen und Piperidinen. Angewandte Chemie, 2019, 131, 9004-9009.	^U 1.6	13
226	Computational Characterization of Single-Electron Transfer Steps in Water Oxidation. Inorganics, 2019, 7, 32.	1.2	13
227	Theoretical Study of the Effect of a Lewis Acid on Hydrogen Exchange Coupling in a Trihydride Metallocene: The Cp2NbH3·AlH3System. Inorganic Chemistry, 1998, 37, 2334-2339.	1.9	12
228	Theoretical Evaluation of Phosphine Effects in Cross-Coupling Reactions. Catalysis By Metal Complexes, 2011, , 57-84.	0.6	12
229	Measuring the Relative Reactivity of the Carbon–Hydrogen Bonds of Alkanes as Nucleophiles. Angewandte Chemie, 2018, 130, 14044-14048.	1.6	12
230	The Effect of Added Ligands on the Reactions of [Ni(COD)(dppf)] with Alkyl Halides: Halide Abstraction May Be Reversible. Organometallics, 2021, 40, 1997-2007.	1.1	12
231	Structure and bonding in a cyclobutyl tris(pyrazolyl)boratoniobium complex and the variation in agostic behaviour with ring size in the series TpMe2NbCl(c-CnH2n â^' 1)(MeCî€,CMe), n = 3–6. Dalton Transactions, 2006, , 2362-2367.	1.6	11
232	Silyl, Hydrido Silylene or Alternative Bonding Modes:Â The Many Possible Structures of [(C5H5)(PH3)lrX]+(X = SiHR2and SiR3; R = H, CH3, SiH3, and Cl). Organometallics, 2006, 25, 4748-4755.	1.1	11
233	Photoinduced O ₂ -Dependent Stepwise Oxidative Deglycination of a Nonheme Iron(III) Complex. Journal of the American Chemical Society, 2018, 140, 14150-14160.	6.6	11
234	Computational Study of Homogeneous Multimetallic Cooperative Catalysis. Topics in Catalysis, 0, , 1.	1.3	11

#	Article	IF	CITATIONS
235	A theoretical evaluation of steric and electronic effects on the structure of [OsO. Theoretica Chimica Acta, 1996, 94, 67.	0.9	11
236	An Expanded SET Model Associated with the Functional Hindrance Dominates the Amide-Directed Distal sp ³ C–H Functionalization. Journal of the American Chemical Society, 2021, 143, 19406-19416.	6.6	11
237	Orbiting of the lithium atom in the [Me2Si(NSiMe3)2]2InLi molecule: theoretical confirmation. Journal of the Chemical Society Chemical Communications, 1995, , 443-444.	2.0	10
238	Unexpectedly large basis set effects on the binding of O2to heme complexes. International Journal of Quantum Chemistry, 2001, 85, 100-108.	1.0	10
239	Ab initio calculations predict a very low barrier for the rotation of the axial ligand in Fe(P)(Im). Chemical Physics Letters, 2002, 353, 379-382.	1.2	10
240	A Theoretical Assessment of the Thermodynamic Preferences in the Cyclopalladation of Amines. European Journal of Inorganic Chemistry, 2005, 2005, 4040-4047.	1.0	10
241	A DFT study on the relative affinity for oxygen of the $\hat{l}\pm$ and \hat{l}^2 subunits of hemoglobin. Journal of Computational Chemistry, 2006, 27, 1446-1453.	1.5	10
242	Di-palladium Complexes with Urea-containing Ligands as Anion Receptors. Supramolecular Chemistry, 2007, 19, 599-611.	1.5	10
243	The role of amide ligands in the stabilization of Pd(II) tricoordinated complexes: is the Pd–NR2 bond order single or higher?. Theoretical Chemistry Accounts, 2009, 123, 75-84.	0.5	10
244	Origin of enantioselectivity in asymmetric Pauson–Khand reactions catalyzed by [(BINAP)Co2(CO)6]â~†. Journal of Molecular Catalysis A, 2010, 324, 127-132.	4.8	10
245	A computational study on the intriguing mechanisms of the gas-phase thermal activation of methane by bare [Ni(H)(OH)]+. Physical Chemistry Chemical Physics, 2012, 14, 9306.	1.3	10
246	Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie, 2017, 129, 13022-13027.	1.6	10
247	The Role of Electronâ€Donor Substituents in the Family of OPBANâ€Cu Water Oxidation Catalysts: Effect on the Degradation Pathways and Efficiency. European Journal of Inorganic Chemistry, 2019, 2019, 2109-2114.	1.0	10
248	DFT characterization of the mechanism for Staudinger/aza-Wittig tandem organocatalysis. Tetrahedron, 2019, 75, 1852-1859.	1.0	10
249	Ab initio calculations on the [Rh(PH3)3Cl] system. Influence of the basis set on the structural and reactivity trends of transition-metal complexes. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1111-1117.	1.7	9
250	A comparative study of DFT and traditional ab initio methodologies on the OsO4 molecule. International Journal of Quantum Chemistry, 2000, 77, 544-551.	1.0	9
251	The Acetate Proton Shuttle between Mutually <i>Trans</i> Ligands. Organometallics, 2018, 37, 2645-2651.	1.1	9
252	Caesium fluoride-mediated hydrocarboxylation of alkenes and allenes: scope and mechanistic insights. Chemical Science, 2019, 10, 10072-10078.	3.7	9

#	Article	IF	Citations
253	Molecular hydrogen complex vs dihydride in ML4 + H2 systems. Influence of the ML4 fragment geometry. Inorganic Chemistry, 1989, 28, 2984-2988.	1.9	8
254	Diradical versus Concerted Mechanisms for the Dihydroxylation of Protoanemonin by OsO4 and OsO4â^'NH3 â^' The Effect of the Base in the Reaction. European Journal of Organic Chemistry, 2003, 2003, 833-839.	1,2	8
255	Photolytic Activation of Late-Transition-Metal–Carbon Bonds and Their Reactivity toward Oxygen. Organometallics, 2021, 40, 4077-4091.	1.1	8
256	QM/MM Calculations on Selectivity in Homogeneous Catalysis. Structure and Bonding, 2015, , 59-79.	1.0	7
257	Theoretical characterisation of the origin of symmetry distortions in TpCuCl complexes. Inorganic Chemistry Communication, 2000, 3, 590-593.	1.8	6
258	GARLEEK: Adding an extra flavor to ONIOM. Journal of Computational Chemistry, 2019, 40, 381-386.	1.5	6
259	Introducing the Catalytic Amination of Silanes via Nitrene Insertion. Journal of the American Chemical Society, 2022, 144, 10608-10614.	6.6	6
260	Synthesis, molecular structure and computational study of a ruthenium bis(thietane) complex. Inorganica Chimica Acta, 2001, 316, 13-18.	1.2	5
261	Computational Methods for Homogeneous Catalysis. Catalysis By Metal Complexes, 2002, , 1-21.	0.6	5
262	Self-Consistency versus "Best-Fit―Approaches in Understanding the Structure of Metal Nitrosyl Complexes. Organometallics, 2004, 23, 6008-6014.	1.1	5
263	Mechanistic Study on the Asymmetric Synthesis of the Wielandâ€Miescher Ketone and Analogs. ChemCatChem, 2019, 11, 4064-4071.	1.8	5
264	Photosynthesis of a Dihydroimidazopyridine Chelate Shines Light on the Reactions of a Photoactivated Iron(III) Complex with O ₂ . Inorganic Chemistry, 2020, 59, 16281-16290.	1.9	5
265	Understanding the Binding Properties of Nâ€heterocyclic Carbenes through BDE Matrix App. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	5
266	Theoretical assessment on the viability of possible intermediates in the reaction mechanism of catalase and peroxidase models. Computational and Theoretical Chemistry, 2003, 632, 323-333.	1.5	4
267	Mechanism of Palladium-Catalyzed Cross-Coupling Reactions. , 0, , 109-130.		4
268	Enantioselective Synthesis of 3â∈Heterosubstitutedâ∈2â∈aminoâ∈1â∈ols by Sequential Metalâ∈Free Diene Aziridination/Kinetic Resolution. Chemistry - A European Journal, 2019, 25, 12628-12635.	1.7	4
269	A Quantitative Model for Alkane Nucleophilicity Based on Câ^'H Bond Structural/Topological Descriptors. Angewandte Chemie, 2020, 132, 3136-3140.	1.6	4
270	Excellence <i>versus</i> Diversity? Not an Either/Or Choice. ACS Catalysis, 2020, 10, 7310-7311.	5.5	4

#	Article	IF	Citations
271	Mechanism and selectivity of photocatalyzed CO ₂ reduction by a function-integrated Ru catalyst. Dalton Transactions, 2022, 51, 3747-3759.	1.6	4
272	Mechanistic Studies on the Synthesis of Pyrrolidines and Piperidines via Copper-Catalyzed Intramolecular Câ€"H Amination. Organometallics, 2022, 41, 1099-1105.	1.1	4
273	Basis set influence on the ab initio description of the dihydrogen complex [Os(PH3)2Cl(CO)H(H2)]1. Computational and Theoretical Chemistry, 1996, 371, 59-68.	1.5	3
274	Computational study on the mechanism of the reaction of carbon dioxide with siloxy silanes. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	3
275	Four Oxidation States in a Single Photoredox Nickelâ€Based Catalytic Cycle: A Computational Study. Angewandte Chemie, 2019, 131, 3938-3942.	1.6	3
276	Seeking the Optimal Descriptor for S _N 2 Reactions through Statistical Analysis of Density Functional Theory Results. Journal of Organic Chemistry, 2022, 87, 363-372.	1.7	3
277	Lewisâ€ 5 Ã u ren begünstigen die Umwandlung eines Metallocentrihydrids in einen Diwasserstoffkomplex und die H ₂ â€Freisetzung aus ihm: das System [Cp ₂ NbH ₃] + BH ₃ . Angewandte Chemie, 1997, 109, 259-261.	1.6	2
278	Rhodium Diphosphine Hydroformylation. Catalysis By Metal Complexes, 2002, , 161-187.	0.6	2
279	A Career in Catalysis: Odile Eisenstein. ACS Catalysis, 2019, 9, 10375-10388.	5.5	2
280	Why does {p-But-calix[4]-(OMe)2(O)2ZrCl2} distort away from C2v symmetry?. Chemical Physics Letters, 1999, 315, 145-149.	1.2	1
281	A computational study on the acceleration of the Prins reaction by indium trichloride. Comptes Rendus Chimie, 2004, 7, 885-893.	0.2	1
282	Computational Studies on Asymmetric Reactions with Sulfur Reagents. , 0, , 399-416.		1
283	Homogeneous Computational Catalysis: The Mechanism for Cross-Coupling and Other C-C Bond Formation Processes. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 185-206.	0.2	1
284	Redefining the Mechanistic Scenario of Carbonâ^'Sulfur Nucleophilic Coupling via Highâ€Valent Cp*Co IV Species. Angewandte Chemie, 2021, 133, 11317-11321.	1.6	1
285	Computational insights into metal-catalyzed asymmetric hydrogenation. Advances in Catalysis, 2021, 68, 385-426.	0.1	1
286	When the MO-SCF procedure is not required: Thinking instead of computing. Journal of Chemical Education, 1990, 67, 648.	1.1	0
287	Quantum mechanical phenomena in dihydrogen and polyhydride transition metal systems. , 2001, , 419-461.		0
288	Frontispiece: Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie - International Edition, 2017, 56, .	7.2	0

#	Article	IF	CITATIONS
289	Frontispiz: Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie, 2017, 129, .	1.6	0
290	Titelbild: Measuring the Relative Reactivity of the Carbonâ€"Hydrogen Bonds of Alkanes as Nucleophiles (Angew. Chem. 42/2018). Angewandte Chemie, 2018, 130, 13885-13885.	1.6	0
291	On the Use of Thermodynamic Cycles for the Calculation of Standard Potentials for the Oxidation of Solid Metals in Solution. ChemPhysChem, 2019, 20, 159-162.	1.0	O
292	Computational Modeling of Selected Photoactivated Processes. Topics in Organometallic Chemistry, 2020, , 131-152.	0.7	0
293	Molecular Hydrogen as a Ligand in Transition Metal Complexes. , 1991, , 375-396.		0
294	2 Mechanistic Aspects of Carbon–Boron Bond Formation. , 2020, , .		0