
Ludovico Cademartiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1823642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth of Colloidal Nanocrystals by Liquid‣ike Coalescence**. Angewandte Chemie - International Edition, 2021, 60, 6667-6672.	13.8	2
2	Growth of Colloidal Nanocrystals by Liquid‣ike Coalescence**. Angewandte Chemie, 2021, 133, 6741-6746.	2.0	0
3	Evidence for root adaptation to a spatially discontinuous water availability in the absence of external water potential gradients. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2012892118.	7.1	7
4	Suppressing Evaporative Loss in Slippery Liquid-Infused Porous Surfaces (SLIPS) with Self-Suspended Perfluorinated Nanoparticles. Langmuir, 2020, 36, 5106-5111.	3.5	12
5	Self-Regulated Porosity and Reactivity in Mesoporous Heterogeneous Catalysts Using Colloidal Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 18410-18416.	3.1	5
6	Self-Limiting Processes in the Flame-Based Fabrication of Superhydrophobic Surfaces from Silicones. ACS Applied Materials & Interfaces, 2019, 11, 29231-29241.	8.0	11
7	On the kinetics of the removal of ligands from films of colloidal nanocrystals by plasmas. Physical Chemistry Chemical Physics, 2019, 21, 1614-1622.	2.8	4
8	Hydrogel-based transparent soils for root phenotyping in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11063-11068.	7.1	58
9	Stress response to CO2 deprivation by Arabidopsis thaliana in plant cultures. PLoS ONE, 2019, 14, e0212462.	2.5	14
10	HOMEs for plants and microbes – a phenotyping approach with quantitative control of signaling between organisms and their individual environments. Lab on A Chip, 2018, 18, 620-626.	6.0	3
11	From Petri Dishes to Model Ecosystems. Trends in Plant Science, 2018, 23, 378-381.	8.8	3
12	Sustainable scalable synthesis of sulfide nanocrystals at low cost with an ionic liquid sulfur precursor. Nature Communications, 2018, 9, 4078.	12.8	13
13	Large-Scale Synthesis of Colloidal Si Nanocrystals and Their Helium Plasma Processing into Spin-On, Carbon-Free Nanocrystalline Si Films. ACS Applied Materials & Interfaces, 2018, 10, 20740-20747.	8.0	5
14	Selective Removal of Ligands from Colloidal Nanocrystal Assemblies with Non-Oxidizing He Plasmas. Chemistry of Materials, 2018, 30, 5961-5967.	6.7	17
15	Simplicity as a Route to Impact in Materials Research. Advanced Materials, 2017, 29, 1604681.	21.0	15
16	Surface and buried interface layer studies on challenging structures as studied by ARXPS. Surface and Interface Analysis, 2017, 49, 1309-1315.	1.8	40
17	Building Materials from Colloidal Nanocrystal Assemblies: Molecular Control of Solid/Solid Interfaces in Nanostructured Tetragonal ZrO2. Chemistry of Materials, 2017, 29, 7888-7900.	6.7	12
18	Calcination does not remove all carbon from colloidal nanocrystal assemblies. Nature Communications, 2017, 8, 2038.	12.8	52

LUDOVICO CADEMARTIRI

#	Article	IF	CITATIONS
19	Sulfur in oleylamine as a powerful and versatile etchant for oxide, sulfide, and metal colloidal nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600543.	1.8	7
20	Plant Growth Environments with Programmable Relative Humidity and Homogeneous Nutrient Availability. PLoS ONE, 2016, 11, e0155960.	2.5	4
21	Thermal Processing of Silicones for Green, Scalable, and Healable Superhydrophobic Coatings. Advanced Materials, 2016, 28, 3677-3682.	21.0	165
22	Towards bulk syntheses of nanomaterials: a homeostatically supersaturated synthesis of polymer-like Bi2S3 nanowires with nearly 100% yield and no injection. RSC Advances, 2016, 6, 113815-113819.	3.6	1
23	Optics-free, plasma-based lithography in inorganic resists made up of nanoparticles. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2016, 15, 031607.	0.9	3
24	Building Materials from Colloidal Nanocrystal Arrays: Evolution of Structure, Composition, and Mechanical Properties upon the Removal of Ligands by O ₂ Plasma. Advanced Materials, 2016, 28, 8900-8905.	21.0	22
25	Building Materials from Colloidal Nanocrystal Arrays: Preventing Crack Formation during Ligand Removal by Controlling Structure and Solvation. Advanced Materials, 2016, 28, 8892-8899.	21.0	33
26	Optics-free lithography on colloidal nanocrystal assemblies. Proceedings of SPIE, 2016, , .	0.8	1
27	Flexible One-Dimensional Nanostructures: A Review. Journal of Materials Science and Technology, 2015, 31, 607-615.	10.7	27
28	Programmable self-assembly. Nature Materials, 2015, 14, 2-9.	27.5	233
29	A Simple and Versatile 2-Dimensional Platform to Study Plant Germination and Growth under Controlled Humidity. PLoS ONE, 2014, 9, e96730.	2.5	5
30	LECO® Bricks as Building Blocks for Centimeter-Scale Biological Environments: The Case of Plants. PLoS ONE, 2014, 9, e100867.	2.5	23
31	Electric winds driven by time oscillating corona discharges. Journal of Applied Physics, 2013, 114, .	2.5	51
32	Nanowires and Nanostructures that Grow like Polymer Molecules. Advanced Materials, 2013, 25, 4829-4844.	21.0	23
33	Using Explosions to Power a Soft Robot. Angewandte Chemie - International Edition, 2013, 52, 2892-2896.	13.8	227
34	Nanowires and Nanostructures that Grow like Polymer Molecules (Adv. Mater. 35/2013). Advanced Materials, 2013, 25, 4828-4828.	21.0	0
35	Recent advances in the synthesis of colloidal nanowires. Canadian Journal of Chemistry, 2012, 90, 1032-1047.	1.1	14
	Electrical Resistance of		

36 Ag^{TS}–S(CH₂)_{<i>n</i>â[^]1}CH₃//Ga₂O₃/EGalt97 Tunneling Junctions. Journal of Physical Chemistry C, 2012, 116, 10848-10860.

LUDOVICO CADEMARTIRI

#	Article	IF	CITATIONS
37	ac electric fields drive steady flows in flames. Physical Review E, 2012, 86, 036314.	2.1	45
38	Using shape for self-assembly. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 2824-2847.	3.4	93
39	Polymer-like Conformation and Growth Kinetics of Bi ₂ S ₃ Nanowires. Journal of the American Chemical Society, 2012, 134, 9327-9334.	13.7	62
40	On the nature and importance of the transition between molecules and nanocrystals: towards a chemistry of "nanoscale perfection― Nanoscale, 2011, 3, 3435.	5.6	33
41	From Ideas to Innovation: Nanochemistry as a Case Study. Small, 2011, 7, 49-54.	10.0	7
42	Nano-Age. How Nanotechnology Changes our Future. Von Mario Pagliaro Angewandte Chemie, 2011, 123, 1022-1023.	2.0	0
43	Emerging strategies for the synthesis of highly monodisperse colloidal nanostructures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4229-4248.	3.4	20
44	Survey of Materials for Nanoskiving and Influence of the Cutting Process on the Nanostructures Produced. ACS Applied Materials & Interfaces, 2010, 2, 2503-2514.	8.0	37
45	Ultrathin Bi ₂ S ₃ Nanowires: Surface and Core Structure at the Cluster-Nanocrystal Transition. Journal of the American Chemical Society, 2010, 132, 9058-9068.	13.7	61
46	Ultrathin Nanowires—A Materials Chemistry Perspective. Advanced Materials, 2009, 21, 1013-1020.	21.0	347
47	Nanofabrication by self-assembly. Materials Today, 2009, 12, 12-23.	14.2	268
48	Nanochemistry: What Is Next?. Small, 2009, 5, 1240-1244.	10.0	42
49	Cross-Linking Bi2S3 Ultrathin Nanowires: A Platform for Nanostructure Formation and Biomolecule Detection. Nano Letters, 2009, 9, 1482-1486.	9.1	75
50	Largeâ€Scale Synthesis of Ultrathin Bi ₂ S ₃ Necklace Nanowires. Angewandte Chemie - International Edition, 2008, 47, 3814-3817.	13.8	138
51	Inside Cover: Large-Scale Synthesis of Ultrathin Bi2S3 Necklace Nanowires (Angew. Chem. Int. Ed.) Tj ETQq1 1 0.	7843]4 rg 13.8	gBŢ /Overlock
52	Ultrathin Sb ₂ S ₃ nanowires and nanoplatelets. Journal of Materials Chemistry, 2008, 18, 66-69.	6.7	44
53	Nanocrystal Plasma Polymerization: From Colloidal Nanocrystals to Inorganic Architectures. Accounts of Chemical Research, 2008, 41, 1820-1830.	15.6	45
54	Silicon based colloidal quantum dot photonic crystal light emitters at telecom wavelengths. , 2008, , .		0

LUDOVICO CADEMARTIRI

#	Article	IF	CITATIONS
55	Plasma within Templates:  Molding Flexible Nanocrystal Solids into Multifunctional Architectures. Nano Letters, 2007, 7, 3864-3868.	9.1	21
56	C60â^'PMO: Periodic Mesoporous Buckyballsilica. Journal of the American Chemical Society, 2007, 129, 15644-15649.	13.7	49
57	Nanocrystal Plasma Polymerization. AIP Conference Proceedings, 2007, , .	0.4	Ο
58	Multigram Scale, Solventless, and Diffusion-Controlled Route to Highly Monodisperse PbS Nanocrystals. Journal of Physical Chemistry B, 2006, 110, 671-673.	2.6	276
59	Iran: let's keep politics in the realm of rationality. Nature, 2006, 443, 906-906.	27.8	4
60	From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nature Materials, 2006, 5, 179-184.	27.5	392
61	Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths. Nature Materials, 2006, 5, 942-945.	27.5	121
62	Size-Dependent Extinction Coefficients of PbS Quantum Dots. Journal of the American Chemical Society, 2006, 128, 10337-10346.	13.7	406
63	Shape-Controlled Bi2S3 Nanocrystals and Their Plasma Polymerization into Flexible Films. Advanced Materials, 2006, 18, 2189-2194.	21.0	122
64	Fabrication of three-dimensional photonic quasicrystals for the near-infrared spectral region. , 2006, , .		0
65	Nanocrystals as Precursors for Flexible Functional Films. Small, 2005, 1, 1184-1187.	10.0	40
66	Fabrication And Characterization Of PbS Quantum Dots. AIP Conference Proceedings, 2005, , .	0.4	0
67	PbS Nanocrystal "Plasma-Polymerization― Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
68	Flux-Assisted Self-Assembly of Monodisperse Colloids. Langmuir, 2003, 19, 7944-7947.	3.5	22
69	The early stages of the self-assembly process of polystyrene beads for photonic applications. Synthetic Metals, 2003, 139, 667-670.	3.9	16