List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1823518/publications.pdf Version: 2024-02-01

ALEYANDED DEFIEED

#	Article	IF	CITATIONS
1	MicroRNA-mediated vascular intercellular communication is altered in chronic kidney disease. Cardiovascular Research, 2022, 118, 316-333.	3.8	21
2	PDGF regulates guanylate cyclase expression and cGMP signaling in vascular smooth muscle. Communications Biology, 2022, 5, 197.	4.4	5
3	EBI2 is a negative modulator of brown adipose tissue energy expenditure in mice and human brown adipocytes. Communications Biology, 2022, 5, 280.	4.4	2
4	Role of Endothelial Cell Lipoprotein Lipase for Brown Adipose Tissue Lipid and Glucose Handling. Frontiers in Physiology, 2022, 13, 859671.	2.8	2
5	Cx43 Promotes Endothelial Cell Migration and Angiogenesis via the Tyrosine Phosphatase SHP-2. International Journal of Molecular Sciences, 2022, 23, 294.	4.1	10
6	Apoptotic brown adipocytes enhance energy expenditure via extracellular inosine. Nature, 2022, 609, 361-368.	27.8	53
7	Quantification of Lipoprotein Uptake <i>in Vivo</i> Using Magnetic Particle Imaging and Spectroscopy. ACS Nano, 2021, 15, 434-446.	14.6	16
8	Highly Efficient Genome Modification of Cultured Primordial Germ Cells with Lentiviral Vectors to Generate Transgenic Songbirds. Stem Cell Reports, 2021, 16, 784-796.	4.8	11
9	Regulation of Brown Adipose Tissue and Beige Fat by the Adenosine A2B Receptor 8.5.5. FASEB Journal, 2021, 35, .	O.5	0
10	Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis. Cell, 2021, 184, 3502-3518.e33.	28.9	68
11	NcRNAs in Vascular and Valvular Intercellular Communication. Frontiers in Molecular Biosciences, 2021, 8, 749681.	3.5	3
12	Cellâ€permeable highâ€affinity tracers for G _q proteins provide structural insights, reveal distinct binding kinetics and identify small molecule inhibitors. British Journal of Pharmacology, 2020, 177, 1898-1916.	5.4	21
13	Heterotrimeric G Protein Subunit Gαq Is a Master Switch for Gβγ-Mediated Calcium Mobilization by Gi-Coupled GPCRs. Molecular Cell, 2020, 80, 940-954.e6.	9.7	54
14	Phosphodiesterase 2A2 regulates mitochondria clearance through Parkin-dependent mitophagy. Communications Biology, 2020, 3, 596.	4.4	20
15	Lack of Gαi2 proteins in adipocytes attenuates diet-induced obesity. Molecular Metabolism, 2020, 40, 101029.	6.5	10
16	Adenosine/A2B Receptor Signaling Ameliorates the Effects of Aging and Counteracts Obesity. Cell Metabolism, 2020, 32, 56-70.e7.	16.2	77
17	Combination of phosphodiesteraseâ€5â€inhibitors and beta blockers improves experimental portal hypertension and erectile dysfunction. Liver International, 2020, 40, 2228-2241.	3.9	9
18	Real-time monitoring of cAMP in brown adipocytes reveals differential compartmentation of β1 and β3-adrenoceptor signalling. Molecular Metabolism, 2020, 37, 100986.	6.5	7

#	Article	IF	CITATIONS
19	Protein kinase G1 regulates bone regeneration and rescues diabetic fracture healing. JCI Insight, 2020, 5, .	5.0	10
20	MicroRNAs in brown and beige fat. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 29-36.	2.4	40
21	Regulation of human brown adipose tissue by adenosine and A2A receptors – studies with [150]H2O and [11C]TMSX PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 743-750.	6.4	37
22	A 2A Râ€induced transcriptional deregulation in astrocytes: An in vitro study. Glia, 2019, 67, 2329-2342.	4.9	28
23	RGS2: A multifunctional signaling hub that balances brown adipose tissue function and differentiation. Molecular Metabolism, 2019, 30, 173-183.	6.5	13
24	The Phosphatase SHP-2 Activates HIF-1α in Wounds In Vivo by Inhibition of 26S Proteasome Activity. International Journal of Molecular Sciences, 2019, 20, 4404.	4.1	10
25	FOXK1 and FOXK2 regulate aerobic glycolysis. Nature, 2019, 566, 279-283.	27.8	110
26	Local anti-angiogenic therapy by magnet-assisted downregulation of SHP2 phosphatase. Journal of Controlled Release, 2019, 305, 155-164.	9.9	9
27	Enzymatic Activity of HPGD in Treg Cells Suppresses Tconv Cells to Maintain Adipose Tissue Homeostasis and Prevent Metabolic Dysfunction. Immunity, 2019, 50, 1232-1248.e14.	14.3	63
28	Inactivation of the tyrosine phosphatase SHP-2 drives vascular dysfunction in Sepsis. EBioMedicine, 2019, 42, 120-132.	6.1	23
29	Direct targeting of Gα _q and Gα ₁₁ oncoproteins in cancer cells. Science Signaling, 2019, 12, .	3.6	84
30	Cytohesin-3 is required for full insulin receptor signaling and controls body weight via lipid excretion. Scientific Reports, 2019, 9, 3442.	3.3	3
31	Tissue Clearing and Light Sheet Microscopy: Imaging the Unsectioned Adult Zebra Finch Brain at Cellular Resolution. Frontiers in Neuroanatomy, 2019, 13, 13.	1.7	20
32	cGMP manipulation in cardiometabolic disease. Current Opinion in Cardiology, 2019, 34, 376-383.	1.8	2
33	BAT Exosomes: Metabolic Crosstalk with Other Organs and Biomarkers for BAT Activity. Handbook of Experimental Pharmacology, 2018, 251, 337-346.	1.8	9
34	Role of cAMP and cGMP Signaling in Brown Fat. Handbook of Experimental Pharmacology, 2018, 251, 161-182.	1.8	24
35	Cannabinoid Type 1 Receptors Are Upregulated During Acute Activation of Brown Adipose Tissue. Diabetes, 2018, 67, 1226-1236.	0.6	32
36	Improved heart repair upon myocardial infarction: Combination of magnetic nanoparticles and tailored magnets strongly increases engraftment of myocytes. Biomaterials, 2018, 155, 176-190.	11.4	45

#	Article	IF	CITATIONS
37	Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Scientific Reports, 2018, 8, 15177.	3.3	181
38	Impact of obesity and aging on crestal alveolar bone height in mice. Annals of Anatomy, 2018, 218, 227-235.	1.9	15
39	The soluble guanylate cyclase stimulator riociguat reduces fibrogenesis and portal pressure in cirrhotic rats. Scientific Reports, 2018, 8, 9372.	3.3	39
40	cGMP-dependent protein kinase-2 regulates bone mass and prevents diabetic bone loss. Journal of Endocrinology, 2018, 238, 203-219.	2.6	15
41	PVAT and Its Relation to Brown, Beige, and White Adipose Tissue in Development and Function. Frontiers in Physiology, 2018, 9, 70.	2.8	103
42	Overexpression of Cx43 in cells of the myocardial scar: Correction of post-infarct arrhythmias through heterotypic cell-cell coupling. Scientific Reports, 2018, 8, 7145.	3.3	31
43	Interplay between Obesity-Induced Inflammation and cGMP Signaling in White Adipose Tissue. Cell Reports, 2017, 18, 225-236.	6.4	33
44	HIF-1α Dependent Wound Healing Angiogenesis InÂVivo Can Be Controlled by Site-Specific Lentiviral Magnetic Targeting of SHP-2. Molecular Therapy, 2017, 25, 1616-1627.	8.2	32
45	Brown Fat-Derived Exosomes: Small Vesicles with Big Impact. Cell Metabolism, 2017, 25, 759-760.	16.2	30
46	Divergent effects of a designer natriuretic peptide CD-NP in the regulation of adipose tissue and metabolism. Molecular Metabolism, 2017, 6, 276-287.	6.5	18
47	NO Augments Endothelial Reactivity by Reducing Myoendothelial Calcium Signal Spreading. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2280-2290.	2.4	18
48	Regulation of brown and beige fat by microRNAs. , 2017, 170, 1-7.		54
49	Abrogation of Gap Junctional Communication in ES Cells Results in a Disruption of Primitive Endoderm Formation in Embryoid Bodies. Stem Cells, 2017, 35, 859-871.	3.2	11
50	Endothelial- and Immune Cell-Derived Extracellular Vesicles in the Regulation ofÂCardiovascular Health and Disease. JACC Basic To Translational Science, 2017, 2, 790-807.	4.1	104
51	Targeting of Magnetic Nanoparticle-coated Microbubbles to the Vascular Wall Empowers Site-specific Lentiviral Gene Delivery <i>in vivo</i> . Theranostics, 2017, 7, 295-307.	10.0	20
52	The complexity of PDGFR signaling: regulation of adipose progenitor maintenance and adipocyte-myofibroblast transition. Stem Cell Investigation, 2017, 4, 28-28.	3.0	14
53	A novel thermoregulatory role for <scp>PDE</scp> 10A in mouse and human adipocytes. EMBO Molecular Medicine, 2016, 8, 796-812.	6.9	34
54	Improvement of vascular function by magnetic nanoparticle-assisted circumferential gene transfer into the native endothelium. Journal of Controlled Release, 2016, 241, 164-173.	9.9	29

#	Article	IF	CITATIONS
55	Fat tissues, the brite and the dark sides. Pflugers Archiv European Journal of Physiology, 2016, 468, 1803-1807.	2.8	28
56	Filarial Infection or Antigen Administration Improves Glucose Tolerance in Diet-Induced Obese Mice. Journal of Innate Immunity, 2016, 8, 601-616.	3.8	78
57	Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nature Communications, 2016, 7, 11420.	12.8	137
58	Differential expression of miR-184 in temporal lobe epilepsy patients with and without hippocampal sclerosis – Influence on microglial function. Scientific Reports, 2016, 6, 33943.	3.3	13
59	TRPM4-mediated control of FcεRI-evoked Ca2+ elevation comprises enhanced plasmalemmal trafficking of TRPM4 channels in connective tissue type mast cells. Scientific Reports, 2016, 6, 32981.	3.3	9
60	Changes in serum miRNAs following generalized convulsive seizures in human mesial temporal lobe epilepsy. Biochemical and Biophysical Research Communications, 2016, 481, 13-18.	2.1	31
61	Metabolic role of dipeptidyl peptidase 4 (DPP4) in primary human (pre)adipocytes. Scientific Reports, 2016, 6, 23074.	3.3	51
62	The Gq signalling pathway inhibits brown and beige adipose tissue. Nature Communications, 2016, 7, 10895.	12.8	90
63	Vascular Repair by Circumferential Cell Therapy Using Magnetic Nanoparticles and Tailored Magnets. ACS Nano, 2016, 10, 369-376.	14.6	45
64	Direct lentivirus injection for fast and efficient gene transfer into brown and beige adipose tissue. Journal of Biological Methods, 2016, 3, e48.	0.6	20
65	Effects of obesity on sGCl̂²1 mediated signaling in white adipose tissue. BMC Pharmacology & Toxicology, 2015, 16, .	2.4	1
66	Different MicroRNA Profiles in Chronic Epilepsy Versus Acute Seizure Mouse Models. Journal of Molecular Neuroscience, 2015, 55, 466-479.	2.3	63
67	Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue. Nature Communications, 2015, 6, 7235.	12.8	85
68	NRG4: An Endocrine Link between Brown Adipose Tissue and Liver. Cell Metabolism, 2015, 21, 13-14.	16.2	55
69	Efficient and graded gene expression in glia and neurons of primary cerebellar cultures transduced by lentiviral vectors. Histochemistry and Cell Biology, 2015, 143, 109-121.	1.7	3
70	Non-small cell lung cancer cell survival crucially depends on functional insulin receptors. Endocrine-Related Cancer, 2015, 22, 609-621.	3.1	15
71	A novel crosstalk between Alk7 and cGMP signaling differentially regulates brown adipocyte function. Molecular Metabolism, 2015, 4, 576-583.	6.5	9
72	cGMP and Brown Adipose Tissue. Handbook of Experimental Pharmacology, 2015, 233, 283-299.	1.8	20

#	Article	IF	CITATIONS
73	Brown, Beige, and White: The New Color Code of Fat and Its Pharmacological Implications. Annual Review of Pharmacology and Toxicology, 2015, 55, 207-227.	9.4	127
74	Combined inhibition of PI3Kβ and PI3Kγ reduces fat mass by enhancing α-MSH–dependent sympathetic drive. Science Signaling, 2014, 7, ra110.	3.6	31
75	Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature, 2014, 516, 395-399.	27.8	316
76	Distinct CD11b+-monocyte subsets accelerate endothelial cell recovery after acute and chronic endothelial cell damage. International Journal of Cardiology, 2014, 173, 80-91.	1.7	8
77	Role of cGMP in fat and metabolism. BMC Pharmacology & Toxicology, 2013, 14, .	2.4	3
78	The role of VASP in cGMP-mediated vascular smooth muscle relaxation. BMC Pharmacology & Toxicology, 2013, 14, .	2.4	0
79	The soluble guanylyl cyclase stimulator BAY 41-2272 increases differentiation and function of brown adipocytes. BMC Pharmacology & Toxicology, 2013, 14, .	2.4	0
80	Influence of PKG on insulin signalling and GSK3 phosphorylation in SH-SY5Y cells. BMC Pharmacology & Toxicology, 2013, 14, .	2.4	1
81	Increased cGMP promotes healthy expansion and browning of white adipose tissue. FASEB Journal, 2013, 27, 1621-1630.	0.5	117
82	Regulation of metabolism by cGMP. , 2013, 140, 81-91.		31
83	Analysis of cGMP Signaling in Adipocytes. Methods in Molecular Biology, 2013, 1020, 175-192.	0.9	6
84	miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nature Communications, 2013, 4, 1769.	12.8	225
85	A Molecular Mechanism for Therapeutic Effects of cGMP-elevating Agents in Pulmonary Arterial Hypertension. Journal of Biological Chemistry, 2013, 288, 16557-16566.	3.4	21
86	Decoding Signaling and Function of the Orphan G Protein–Coupled Receptor GPR17 with a Small-Molecule Agonist. Science Signaling, 2013, 6, ra93.	3.6	111
87	Lentiviral Vector Mediated Thymidine Kinase Expression in Pluripotent Stem Cells Enables Removal of Tumorigenic Cells. PLoS ONE, 2013, 8, e70543.	2.5	17
88	A VASP-Rac–Soluble Guanylyl Cyclase Pathway Controls cGMP Production in Adipocytes. Science Signaling, 2012, 5, ra62.	3.6	31
89	KIAA1797/FOCAD encodes a novel focal adhesion protein with tumour suppressor function in gliomas. Brain, 2012, 135, 1027-1041.	7.6	47
90	Brown Fat Develops a <i>Brite</i> Future. Obesity Facts, 2012, 5, 890-896.	3.4	21

#	Article	IF	CITATIONS
91	Identification of Magnetic Nanoparticles for Combined Positioning and Lentiviral Transduction of Endothelial Cells. Pharmaceutical Research, 2012, 29, 1242-1254.	3.5	24
92	Optimization of Magnetic Nanoparticle-Assisted Lentiviral Gene Transfer. Pharmaceutical Research, 2012, 29, 1255-1269.	3.5	22
93	Targeted Endothelial Gene Delivery by Ultrasonic Destruction of Magnetic Microbubbles Carrying Lentiviral Vectors. Pharmaceutical Research, 2012, 29, 1282-1294.	3.5	29
94	Magnetic Nanoparticles for Biomedical Applications. Pharmaceutical Research, 2012, 29, 1161-1164.	3.5	8
95	FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3. Human Molecular Genetics, 2011, 20, 2928-2941.	2.9	87
96	cGMP and cAMP differentially regulate differentiation and function of brown adipocytes. BMC Pharmacology, 2011, 11, .	0.4	5
97	Radially symmetric endothelial cell replacement and lentiviral targeting in vessels by the use of magnetic nanoparticles (MNPs). FASEB Journal, 2011, 25, 1127.1.	0.5	0
98	Germ-line transmission of lentiviral PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology. Transgenic Research, 2010, 19, 549-556.	2.4	28
99	Pharmacological potential of RNAi — Focus on miRNA. , 2010, 126, 217-227.		30
100	Glucose Intolerance and Reduced Proliferation of Pancreatic β-Cells in Transgenic Pigs With Impaired Glucose-Dependent Insulinotropic Polypeptide Function. Diabetes, 2010, 59, 1228-1238.	0.6	160
101	Cyclic GMP and Protein Kinase G Control a Src-Containing Mechanosome in Osteoblasts. Science Signaling, 2010, 3, ra91.	3.6	80
102	Lentivirus Transgenesis. Methods in Enzymology, 2010, 477, 3-15.	1.0	11
103	The yeast Sup35NM domain propagates as a prion in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 462-467.	7.1	65
104	Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. Journal of Experimental Medicine, 2009, 206, 221-232.	8.5	193
105	Protein Kinase G Controls Brown Fat Cell Differentiation and Mitochondrial Biogenesis. Science Signaling, 2009, 2, ra78.	3.6	118
106	Profilin 1 is required for abscission during late cytokinesis of chondrocytes. EMBO Journal, 2009, 28, 1157-1169.	7.8	69
107	Distribution and expression of porcine endogenous retroviruses in multiâ€ŧransgenic pigs generated for xenotransplantation. Xenotransplantation, 2009, 16, 64-73.	2.8	79
108	Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 44-49.	7.1	110

#	Article	IF	CITATIONS
109	Association with the Auxiliary Subunit PEX5R/Trip8b Controls Responsiveness of HCN Channels to cAMP and Adrenergic Stimulation. Neuron, 2009, 62, 814-825.	8.1	119
110	Lentiviral Transgenesis. Methods in Molecular Biology, 2009, 530, 391-405.	0.9	50
111	Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11336-11341.	7.1	127
112	Adult Neurogenesis Requires Smad4-Mediated Bone Morphogenic Protein Signaling in Stem Cells. Journal of Neuroscience, 2008, 28, 434-446.	3.6	228
113	The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. Journal of Cell Biology, 2007, 178, 167-178.	5.2	183
114	Therapeutic potential of RNA interference in neurodegenerative diseases. Future Neurology, 2007, 2, 237-240.	0.5	0
115	Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature, 2007, 450, 819-824.	27.8	386
116	Pancreas-specific RelA/p65 truncation increases susceptibility of acini to inflammation-associated cell death following cerulein pancreatitis. Journal of Clinical Investigation, 2007, 117, 1490-1501.	8.2	171
117	Cyld Inhibits Tumor Cell Proliferation by Blocking Bcl-3-Dependent NF-κB Signaling. Cell, 2006, 125, 665-677.	28.9	451
118	Evaluation of laser-assisted lentiviral transgenesis in bovine. Transgenic Research, 2006, 15, 447-454.	2.4	13
119	The enhancement of HCN channel instantaneous current facilitated by slow deactivation is regulated by intracellular chloride concentration. Pflugers Archiv European Journal of Physiology, 2006, 452, 718-727.	2.8	23
120	Loss of CNGB1 Protein Leads to Olfactory Dysfunction and Subciliary Cyclic Nucleotide-gated Channel Trapping. Journal of Biological Chemistry, 2006, 281, 35156-35166.	3.4	73
121	Lentiviral Transgenesis - A Versatile Tool for Basic Research and Gene Therapy. Current Gene Therapy, 2006, 6, 535-542.	2.0	40
122	Epigenetic Regulation of Lentiviral Transgene Vectors in a Large Animal Model. Molecular Therapy, 2006, 13, 59-66.	8.2	103
123	Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. Journal of Clinical Investigation, 2006, 116, 3204-3210.	8.2	125
124	Neuronal fate determinants of adult olfactory bulb neurogenesis. Nature Neuroscience, 2005, 8, 865-872.	14.8	549
125	Impaired Channel Targeting and Retinal Degeneration in Mice Lacking the Cyclic Nucleotide-Gated Channel Subunit CNGB1. Journal of Neuroscience, 2005, 25, 130-138.	3.6	148
126	Consequences of loss of PINCH2 expression in mice. Journal of Cell Science, 2005, 118, 5899-5910.	2.0	50

8

#	Article	IF	CITATIONS
127	The Murine HCN3 Gene Encodes a Hyperpolarization-activated Cation Channel with Slow Kinetics and Unique Response to Cyclic Nucleotides. Journal of Biological Chemistry, 2005, 280, 27056-27061.	3.4	95
128	Regulated lentiviral NGF gene transfer controls rescue of medial septal cholinergic neurons. Molecular Therapy, 2005, 11, 916-925.	8.2	67
129	Mena and Vasodilator-Stimulated Phosphoprotein Are Required for Multiple Actin-Dependent Processes That Shape the Vertebrate Nervous System. Journal of Neuroscience, 2004, 24, 8029-8038.	3.6	98
130	Generation of Transgenic Cattle by Lentiviral Gene Transfer into Oocytes1. Biology of Reproduction, 2004, 71, 405-409.	2.7	147
131	Lentiviral transgenesis. Transgenic Research, 2004, 13, 513-522.	2.4	94
132	Efficient transgenesis in farm animals by lentiviral vectors. EMBO Reports, 2003, 4, 1054-1058.	4.5	251
133	Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes and Development, 2003, 17, 926-940.	5.9	348
134	Efficient transgenesis in farm animals by lentiviral vectors. EMBO Reports, 2003, 4, 1054-1058.	4.5	91
135	Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2140-2145.	7.1	511
136	GENETHERAPY: Promises and Problems. Annual Review of Genomics and Human Genetics, 2001, 2, 177-211.	6.2	262
137	Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4â^'/â'' mice. Nature Cell Biology, 2001, 3, 121-127.	10.3	533
138	Transduction of Liver Cells by Lentiviral Vectors: Analysis in Living Animals by Fluorescence Imaging. Molecular Therapy, 2001, 3, 319-322.	8.2	118
139	Impaired relaxation of stomach smooth muscle in mice lacking cyclic GMP-dependent protein kinase I. British Journal of Pharmacology, 2000, 129, 395-401.	5.4	53
140	Functional Embryonic Cardiomyocytes after Disruption of the L-type α1C (Ca 1.2) Calcium Channel Gene in the Mouse. Journal of Biological Chemistry, 2000, 275, 39193-39199.	3.4	241
141	Absence of the Î ³ Subunit of the Skeletal Muscle Dihydropyridine Receptor Increases L-type Ca2+ Currents and Alters Channel Inactivation Properties. Journal of Biological Chemistry, 2000, 275, 14476-14481.	3.4	95
142	Mechanisms of NO/cGMP-Dependent Vasorelaxation. Circulation Research, 2000, 87, 825-830.	4.5	228
143	Long-Term Potentiation in the Hippocampal CA1 Region of Mice Lacking cGMP-Dependent Kinases Is Normal and Susceptible to Inhibition of Nitric Oxide Synthase. Journal of Neuroscience, 1999, 19, 48-55.	3.6	123
144	Increased Adhesion and Aggregation of Platelets Lacking Cyclic Guanosine 3′,5′-Monophosphate Kinase I. Journal of Experimental Medicine, 1999, 189, 1255-1264.	8.5	222

#	Article	IF	CITATIONS
145	Endochondral Ossification Is Dependent on the Mechanical Properties of Cartilage Tissue and on Intracellular Signals in Chondrocytesa. Annals of the New York Academy of Sciences, 1998, 857, 74-85.	3.8	19
146	Mouse models for extracellular matrix diseases. Journal of Molecular Medicine, 1998, 76, 238-252.	3.9	39
147	Identification of the Amino Acid Sequences Responsible for High Affinity Activation of cGMP Kinase Iα. Journal of Biological Chemistry, 1997, 272, 10522-10528.	3.4	92
148	Partial Inhibition of Protein Synthesis byPseudomonasExotoxin A Deranges Catecholamine Sensitivity of Cultured Rat Heart Myocytes. Journal of Molecular and Cellular Cardiology, 1997, 29, 799-811.	1.9	26
149	Cyclic GMP-dependent Protein Kinase Blocks Pertussis Toxin-sensitive Hormone Receptor Signaling Pathways in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 1995, 270, 9052-9059.	3.4	62