
Christian N Parisod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1819902/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Hybridization and speciation. Journal of Evolutionary Biology, 2013, 26, 229-246.	1.7	1,735
2	Evolutionary consequences of autopolyploidy. New Phytologist, 2010, 186, 5-17.	7.3	580
3	Epigenetic Variation in Mangrove Plants Occurring in Contrasting Natural Environment. PLoS ONE, 2010, 5, e10326.	2.5	336
4	Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytologist, 2010, 186, 37-45.	7.3	233
5	Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in <i>Spartina</i> . New Phytologist, 2009, 184, 1003-1015.	7.3	207
6	Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biological Invasions, 2009, 11, 1159-1173.	2.4	202
7	Natural Pathways to Polyploidy in Plants and Consequences for Genome Reorganization. Cytogenetic and Genome Research, 2013, 140, 79-96.	1.1	131
8	Glacial in situ survival in the Western Alps and polytopic autopolyploidy in Biscutella laevigata L. (Brassicaceae). Molecular Ecology, 2007, 16, 2755-2767.	3.9	101
9	Lateral transfers of large DNA fragments spread functional genes among grasses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4416-4425.	7.1	94
10	Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae). Biological Journal of the Linnean Society, 0, 100, 597-607.	1.6	93
11	Transposable elements and microevolutionary changes in natural populations. Molecular Ecology Resources, 2013, 13, 765-775.	4.8	81
12	Genomeâ€wide association to fineâ€scale ecological heterogeneity within a continuous population of <i>Biscutella laevigata</i> (Brassicaceae). New Phytologist, 2008, 178, 436-447.	7.3	59
13	Origin and expansion of the allotetraploid <i>Aegilops geniculata</i> , a wild relative of wheat. New Phytologist, 2010, 187, 1170-1180.	7.3	58
14	Very highâ€resolution digital elevation models: are multiâ€scale derived variables ecologically relevant?. Methods in Ecology and Evolution, 2015, 6, 1373-1383.	5.2	56
15	Plant defense resistance in natural enemies of a specialist insect herbivore. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23174-23181.	7.1	53
16	Towards unified hypotheses of the impact of polyploidy on ecological niches. New Phytologist, 2016, 212, 540-542.	7.3	50
17	Repeated Whole-Genome Duplication, Karyotype Reshuffling, and Biased Retention of Stress-Responding Genes in Buckler Mustard. Plant Cell, 2016, 28, 17-27.	6.6	49
18	Genetic Variability and Founder Effect in the Pitcher Plant Sarracenia purpurea (Sarraceniaceae) in Populations Introduced into Switzerland: from Inbreeding to Invasion. Annals of Botany, 2005, 95, 277-286.	2.9	46

#	Article	lF	CITATIONS
19	Genome reorganization in F ₁ hybrids uncovers the role of retrotransposons in reproductive isolation. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142874.	2.6	45
20	Gene flow between wheat and wild relatives: empirical evidence from <i>Aegilops geniculata</i> , <i>Ae.Âneglecta</i> and <i>Ae.Âtriuncialis</i> . Evolutionary Applications, 2011, 4, 685-695.	3.1	42
21	Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats. New Phytologist, 2014, 202, 975-985.	7.3	42
22	Fine-scale genetic structure and marginal processes in an expanding population of Biscutella laevigata L. (Brassicaceae). Heredity, 2008, 101, 536-542.	2.6	38
23	Responses of Transposable Elements to Polyploidy. Topics in Current Genetics, 2012, , 147-168.	0.7	37
24	Divergent selection in trailing- versus leading-edge populations of Biscutella laevigata. Annals of Botany, 2010, 105, 655-660.	2.9	35
25	Evolutionary dynamics of retrotransposons following autopolyploidy in the Buckler Mustard species complex. Plant Journal, 2015, 82, 621-631.	5.7	35
26	Postglacial recolonisation of plants in the western Alps of Switzerland. Botanica Helvetica, 2008, 118, 1-12.	1.1	32
27	Evolutionary Dynamics of Retrotransposons Assessed by High-Throughput Sequencing in Wild Relatives of Wheat. Genome Biology and Evolution, 2013, 5, 1010-1020.	2.5	30
28	Transcriptional activity of transposable elements along an elevational gradient in Arabidopsis arenosa. Mobile DNA, 2021, 12, 7.	3.6	30
29	Differential Dynamics of Transposable Elements during Long-Term Diploidization of Nicotiana Section Repandae (Solanaceae) Allopolyploid Genomes. PLoS ONE, 2012, 7, e50352.	2.5	29
30	Parental transposable element loads influence their dynamics in young <i>Nicotiana</i> hybrids and allotetraploids. New Phytologist, 2019, 221, 1619-1633.	7.3	23
31	Genetics of Cryptic Speciation within an Arctic Mustard, Draba nivalis. PLoS ONE, 2014, 9, e93834.	2.5	23
32	Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles. Nature Communications, 2021, 12, 4979.	12.8	22
33	Hybridization preceded radiation in diploid wheats. Molecular Phylogenetics and Evolution, 2019, 139, 106554.	2.7	21
34	Patterns of genetic divergence among populations of the pseudometallophyte Biscutella laevigata from southern Poland. Plant and Soil, 2014, 383, 245-256.	3.7	20
35	Differential introgression and reorganization of retrotransposons in hybrid zones between wild wheats. Molecular Ecology, 2016, 25, 2518-2528.	3.9	19
36	Chromosome restructuring among hybridizing wild wheats. New Phytologist, 2020, 226, 1263-1273.	7.3	19

CHRISTIAN N PARISOD

#	Article	IF	CITATIONS
37	Benefits from living together? Clades whose species use similar habitats may persist as a result of ecoâ€evolutionary feedbacks. New Phytologist, 2017, 213, 66-82.	7.3	18
38	Adaptive landscape genetics: pitfalls and benefits. Molecular Ecology, 2012, 21, 3644-3646.	3.9	16
39	Ecoâ€genetic additivity of diploids in allopolyploid wild wheats. Ecology Letters, 2020, 23, 663-673.	6.4	16
40	Plant speciation in the face of recurrent climate changes in the Alps. Alpine Botany, 2022, 132, 21-28.	2.4	16
41	Genomeâ€specific introgression between wheat and its wild relative <i>Aegilops triuncialis</i> . Journal of Evolutionary Biology, 2013, 26, 223-228.	1.7	15
42	The genome of <i>Draba nivalis</i> shows signatures of adaptation to the extreme environmental stresses of the Arctic. Molecular Ecology Resources, 2021, 21, 661-676.	4.8	14
43	Genomeâ€wide variation in nucleotides and retrotransposons in alpine populations of <i>Arabis alpina</i> (Brassicaceae). Molecular Ecology Resources, 2019, 19, 773-787.	4.8	13
44	Impact of polymorphic transposable elements on linkage disequilibrium along chromosomes. Molecular Ecology, 2019, 28, 1550-1562.	3.9	12
45	Recent hybrid speciation at the origin of the narrow endemic <i>Pulmonaria helvetica</i> . Annals of Botany, 2021, 127, 21-31.	2.9	12
46	Wheat alleles introgress into selfing wild relatives: empirical estimates from approximate Bayesian computation in <i>Aegilops triuncialis</i> . Molecular Ecology, 2014, 23, 5089-5101.	3.9	11
47	The phylogeographic structure of Arabis alpina in the Alps shows consistent patterns across different types of molecular markers and geographic scales. Alpine Botany, 2018, 128, 35-45.	2.4	11
48	Resolving fineâ€grained dynamics of retrotransposons: comparative analysis of inferential methods and genomic resources. Plant Journal, 2017, 90, 979-993.	5.7	10
49	Phylogeography of the moonwort fern Botrychium lunaria (Ophioglossaceae) based on chloroplast DNA in the Central-European Mountain System. Alpine Botany, 2017, 127, 185-196.	2.4	10
50	Multiscale landscape genomic models to detect signatures of selection in the alpine plant <i>Biscutella laevigata</i> . Ecology and Evolution, 2018, 8, 1794-1806.	1.9	8
51	Tracking population genetic signatures of local extinction with herbarium specimens. Annals of Botany, 2022, 129, 857-868.	2.9	8
52	Marie Brockmann-Jerosch and her influence on Alpine phylogeography. Alpine Botany, 2011, 121, 5-10.	2.4	7
53	Jumping genes: Genomic ballast or powerhouse of biological diversification. Molecular Ecology, 2017, 26, 4587-4590.	3.9	7
54	Climate Change and Alpine Screes: No Future for Glacial Relict Papaver occidentale (Papaveraceae) in Western Prealps. Diversity, 2020, 12, 346.	1.7	7

#	Article	IF	CITATIONS
55	Multiscale Very High Resolution Topographic Models in Alpine Ecology: Pros and Cons of Airborne LiDAR and Drone-Based Stereo-Photogrammetry Technologies. Remote Sensing, 2021, 13, 1588.	4.0	7
56	Hybrid Genetic Algorithm and Lasso Test Approach for Inferring Well Supported Phylogenetic Trees Based on Subsets of Chloroplastic Core Genes. Lecture Notes in Computer Science, 2015, , 83-96.	1.3	5
57	Plant and vegetation responses to a changing environment: an alpine issue. Botanica Helvetica, 2010, 120, 83-84.	1.1	4
58	Genetic structure of the endemic Papaver occidentale indicates survival and immigration in the Western Prealps. Alpine Botany, 2020, 130, 129-140.	2.4	3
59	Very high resolution digital elevation models (VHR DEMs) and multiscale landscape genomics analysis applied to an alpine plant species. SIGSPATIAL Special, 2011, 3, 10-14.	2.7	1
60	Plant evolutionary ecology in mountain regions in space and time. Alpine Botany, 2022, 132, 1.	2.4	1
61	Phylogenetics and Biogeography of Lilium ledebourii from the Hyrcanian Forest. Diversity, 2022, 14, 137.	1.7	1
62	Detecting Epigenetic Effects of Transposable Elements in Plants. Methods in Molecular Biology, 2014, 1112, 211-217.	0.9	0
63	Profiling Transposable Elements and Their Epigenetic Effects in Non-model Species. Methods in Molecular Biology, 2017, 1456, 243-250.	0.9	Ο