
Alejo Aguirre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1819812/publications.pdf Version: 2024-02-01

ALEIO ACHIDDE

#	Article	IF	CITATIONS
1	Identification of key reaction intermediates during toluene combustion on a Pd/CeO2 catalyst using operando modulated DRIFT spectroscopy. Catalysis Today, 2022, 394-396, 225-234.	4.4	19
2	Al2O3 nanofibers prepared from aluminum Di(sec-butoxide)acetoacetic ester chelate exhibits high surface area and acidity. Journal of Catalysis, 2022, 405, 520-533.	6.2	12
3	Tuning the catalytic acidity in Al ₂ O ₃ nanofibers with mordenite nanocrystals for dehydration reactions. Catalysis Science and Technology, 2022, 12, 4243-4254.	4.1	1
4	Controlling the selectivity in the Fischer-Tropsch synthesis using foam catalysts: An integrated experimental and modeling approach. Chemical Engineering Journal, 2021, 409, 128139.	12.7	10
5	Monitoring Reaction Intermediates in Plasma-Driven SO ₂ , NO, and NO ₂ Remediation Chemistry Using In Situ SERS Spectroscopy. Analytical Chemistry, 2021, 93, 6421-6427.	6.5	8
6	The role of vapor-liquid equilibria during the Fischer-Tropsch Synthesis: A modeling study. Chemical Engineering Science, 2021, 233, 116394.	3.8	3
7	Rational Design of Bioinspired Nanocomposites with Tunable Catalytic Activity. Crystal Growth and Design, 2021, 21, 4299-4304.	3.0	9
8	Highly disperse CeO2 nanoparticles on MgO hexagonal plates as oxidation catalyst. Applied Catalysis A: General, 2021, 623, 118282.	4.3	6
9	Design of an optimized DRIFT cell/microreactor for spectrokinetic investigations of surface reaction mechanisms. Molecular Catalysis, 2020, 481, 100628.	2.0	6
10	Propoxylation of fatty amines: Switching from batch to flow. Journal of Advanced Manufacturing and Processing, 2020, 2, e10042.	2.4	3
11	Open-cell foams as catalysts support: A systematic analysis of the mass transfer limitations. Chemical Engineering Journal, 2020, 393, 124656.	12.7	24
12	Gold Stabilized with Iridium on Ceria–Niobia Catalyst: Activity and Stability for CO Oxidation. Topics in Catalysis, 2019, 62, 977-988.	2.8	9
13	Insight into the mechanism of acetonitrile hydrogenation in liquid phase on Pt/Al2O3 by ATR-FTIR. Catalysis Today, 2019, 336, 22-32.	4.4	15
14	Resolution of intermediate surface species by combining modulated infrared spectroscopy and chemometrics. Analytica Chimica Acta, 2019, 1049, 38-46.	5.4	14
15	ATR-FTIR spectrokinetic analysis of the CO adsorption and oxidation at water/platinum interface. Catalysis Today, 2017, 283, 127-133.	4.4	14
16	In-Situ DRIFT Study of Au–Ir/Ceria Catalysts: Activity and Stability for CO Oxidation. Topics in Catalysis, 2016, 59, 347-356.	2.8	23
17	Reversible deactivation of a Au/Ce0.62Zr0.38O2 catalyst in CO oxidation: A systematic study of CO2-triggered carbonate inhibition. Journal of Catalysis, 2014, 316, 210-218.	6.2	45
18	Design and operational limits of an ATR-FTIR spectroscopic microreactor for investigating reactions at liquid–solid interface. Chemical Engineering Journal, 2014, 243, 197-206.	12.7	31

#	Article	IF	CITATIONS
19	Selective detection of reaction intermediates using concentration-modulation excitation DRIFT spectroscopy. Catalysis Today, 2013, 205, 34-40.	4.4	42
20	ATR-FTIR Study of the Decomposition of Acetic Anhydride on Fosfotungstic Wells–Dawson Heteropoly Acid Using Concentration-Modulation Excitation Spectroscopy. Topics in Catalysis, 2011, 54, 229-235.	2.8	15