Tarek A Sayed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1819417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiagent modeling of pedestrian-vehicle conflicts using Adversarial Inverse Reinforcement Learning. Transportmetrica A: Transport Science, 2023, 19, .	2.0	9
2	Microscopic modeling of cyclists on off-street paths: a stochastic imitation learning approach. Transportmetrica A: Transport Science, 2022, 18, 345-366.	2.0	4
3	Microscopic modeling of cyclists interactions with pedestrians in shared spaces: a Gaussian process inverse reinforcement learning approach. Transportmetrica A: Transport Science, 2022, 18, 828-854.	2.0	19
4	Modeling lateral interactions between motorized vehicles and non-motorized vehicles in mixed traffic using accelerated failure duration model. Transportmetrica A: Transport Science, 2022, 18, 910-933.	2.0	10
5	Can motorcyclist behavior in traffic conflicts be modeled? A deep reinforcement learning approach for motorcycle-pedestrian interactions. Transportmetrica B, 2022, 10, 396-420.	2.3	5
6	Bayesian dynamic extreme value modeling for conflict-based real-time safety analysis. Analytic Methods in Accident Research, 2022, 34, 100204.	8.2	37
7	Modeling Pedestrian Temporal Violations at Signalized Crosswalks: A Random Intercept Parametric Survival Model. Transportation Research Record, 2022, 2676, 707-720.	1.9	7
8	How many are enough?: Investigating the effectiveness of multiple conflict indicators for crash frequency-by-severity estimation by automated traffic conflict analysis. Transportation Research Part C: Emerging Technologies, 2022, 138, 103653.	7.6	30
9	Real-Time Crash-Risk Optimization at Signalized Intersections. Transportation Research Record, 2022, 2676, 32-50.	1.9	8
10	Do road users play Nash Equilibrium? A comparison between Nash and Logistic stochastic Equilibriums for multiagent modeling of road user interactions in shared spaces. Expert Systems With Applications, 2022, 205, 117710.	7.6	4
11	Random-Parameter Bayesian Hierarchical Extreme Value Modeling Approach with Heterogeneity in Means and Variances for Traffic Conflict–Based Crash Estimation. Journal of Transportation Engineering Part A: Systems, 2022, 148, .	1.4	17
12	The impact of bike network indicators on bike kilometers traveled and bike safety: A network theory approach. Environment and Planning B: Urban Analytics and City Science, 2021, 48, 2055-2072.	2.0	4
13	Modeling traffic conflicts for use in road safety analysis: A review of analytic methods and future directions. Analytic Methods in Accident Research, 2021, 29, 100142.	8.2	92
14	Investigating the impact of correlation on system multimode reliability-based analysis of highway geometric design. Transportmetrica A: Transport Science, 2021, 17, 1027-1054.	2.0	8
15	An extreme value theory based approach for calibration of microsimulation models for safety analysis. Simulation Modelling Practice and Theory, 2021, 106, 102172.	3.8	29
16	Utility Poles. , 2021, , 731-736.		0
17	Injury severity influence factors and collision prediction - A case study on Kuwait highways. Journal of Transport and Health, 2021, 20, 101025.	2.2	5
18	Multivariate Bayesian hierarchical Gaussian copula modeling of the non-stationary traffic conflict extremes for crash estimation. Analytic Methods in Accident Research, 2021, 29, 100154	8.2	31

#	Article	IF	CITATIONS
19	Comparison of threshold determination methods for the deceleration rate to avoid a crash (DRAC)-based crash estimation. Accident Analysis and Prevention, 2021, 153, 106051.	5.7	39
20	A systematic mapping review of surrogate safety assessment using traffic conflict techniques. Accident Analysis and Prevention, 2021, 153, 106016.	5.7	105
21	Using Bayesian Tobit Models to Understand the Impact of Mobile Automated Enforcement on Collision and Crime Rates. Sustainability, 2021, 13, 6422.	3.2	0
22	Real-Time Safety Optimization of Connected Vehicle Trajectories Using Reinforcement Learning. Sensors, 2021, 21, 3864.	3.8	5
23	Markov-game modeling of cyclist-pedestrian interactions in shared spaces: A multi-agent adversarial inverse reinforcement learning approach. Transportation Research Part C: Emerging Technologies, 2021, 128, 103191.	7.6	22
24	Random parameters Bayesian hierarchical modeling of traffic conflict extremes for crash estimation. Accident Analysis and Prevention, 2021, 157, 106159.	5.7	39
25	Modeling the influence of mobile phone use distraction on pedestrian reaction times to green signals: A multilevel mixed-effects parametric survival model. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 81, 115-129.	3.7	30
26	Validating the Bayesian hierarchical extreme value model for traffic conflict-based crash estimation on freeway segments with site-level factors. Accident Analysis and Prevention, 2021, 159, 106269.	5.7	16
27	Accounting for seasonal effects on cyclist-vehicle crashes. Accident Analysis and Prevention, 2021, 159, 106263.	5.7	9
28	Investigating the transferability of Bayesian hierarchical extreme value model for traffic conflict-based crash estimation. Canadian Journal of Civil Engineering, 2021, 48, 1071-1080.	1.3	5
29	Multi-type Bayesian hierarchical modeling of traffic conflict extremes for crash estimation. Accident Analysis and Prevention, 2021, 160, 106309.	5.7	36
30	Modeling pedestrian behavior in pedestrian-vehicle near misses: A continuous Gaussian Process Inverse Reinforcement Learning (GP-IRL) approach. Accident Analysis and Prevention, 2021, 161, 106355.	5.7	21
31	Real-time signal-vehicle coupled control: An application of connected vehicle data to improve intersection safety. Accident Analysis and Prevention, 2021, 162, 106389.	5.7	21
32	A bivariate extreme value model for estimating crash frequency by severity using traffic conflicts. Analytic Methods in Accident Research, 2021, 32, 100180.	8.2	30
33	A systematic review of traffic conflict-based safety measures with a focus on application context. Analytic Methods in Accident Research, 2021, 32, 100185.	8.2	40
34	Investigating factors that influence pedestrian and cyclist violations on shared use path: An observational study on the Brooklyn bridge promenade. International Journal of Sustainable Transportation, 2020, 14, 503-512.	4.1	13
35	Microscopic behavioural analysis of cyclist and pedestrian interactions in shared spaces. Canadian Journal of Civil Engineering, 2020, 47, 50-62.	1.3	29
36	Examining two-wheelers' overtaking behavior and lateral distance choices at a shared roadway facility. Journal of Transportation Safety and Security, 2020, 12, 1046-1066.	1.6	10

#	Article	IF	CITATIONS
37	Enhancing unsupervised video-based vehicle tracking and modeling for traffic data collection. Canadian Journal of Civil Engineering, 2020, 47, 982-997.	1.3	4
38	Self-learning adaptive traffic signal control for real-time safety optimization. Accident Analysis and Prevention, 2020, 146, 105713.	5.7	35
39	Multivariate Bayesian hierarchical modeling of the non-stationary traffic conflict extremes for crash estimation. Analytic Methods in Accident Research, 2020, 28, 100135.	8.2	31
40	Determining If Walkability and Bikeability Indices Reflect Pedestrian and Cyclist Safety. Transportation Research Record, 2020, 2674, 767-775.	1.9	16
41	A hierarchical bayesian peak over threshold approach for conflict-based before-after safety evaluation of leading pedestrian intervals. Accident Analysis and Prevention, 2020, 147, 105772.	5.7	43
42	Investigating safety effects of wider longitudinal pavement markings. Accident Analysis and Prevention, 2020, 142, 105527.	5.7	17
43	Cyclist-vehicle crash modeling with measurement error in traffic exposure. Accident Analysis and Prevention, 2020, 144, 105612.	5.7	6
44	Before–After Evaluation of Left-Turn Lane Extension Considering Injury Severity and Collision Type. Transportation Research Record, 2020, 2674, 67-77.	1.9	2
45	A novel approach for real time crash prediction at signalized intersections. Transportation Research Part C: Emerging Technologies, 2020, 117, 102683.	7.6	55
46	Comparison between Surrogate Safety Assessment Model and Real-Time Safety Models in Predicting Field-Measured Conflicts at Signalized Intersections. Transportation Research Record, 2020, 2674, 100-112.	1.9	21
47	Real-time conflict-based Bayesian Tobit models for safety evaluation of signalized intersections. Accident Analysis and Prevention, 2020, 144, 105660.	5.7	85
48	Modeling pedestrian-cyclist interactions in shared space using inverse reinforcement learning. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 70, 37-57.	3.7	42
49	A bivariate Bayesian hierarchical extreme value model for traffic conflict-based crash estimation. Analytic Methods in Accident Research, 2020, 25, 100111.	8.2	27
50	A comparison of collision-based and conflict-based safety evaluation of left-turn bay extension. Transportmetrica A: Transport Science, 2020, 16, 676-694.	2.0	21
51	A composite zonal index for biking attractiveness and safety. Accident Analysis and Prevention, 2020, 137, 105439.	5.7	18
52	System reliability as a surrogate measure of safety for horizontal curves: methodology and case studies. Transportmetrica A: Transport Science, 2020, 16, 957-986.	2.0	16
53	Models to evaluate the severity of pedestrian-vehicle conflicts in five cities. Transportmetrica A: Transport Science, 2019, 15, 354-375.	2.0	30
54	Applying Machine Learning and Statistical Approaches for Travel Time Estimation in Partial Network Coverage. Sustainability, 2019, 11, 3822.	3.2	8

#	Article	IF	CITATIONS
55	A full Bayes approach for traffic conflict-based before–after safety evaluation using extreme value theory. Accident Analysis and Prevention, 2019, 131, 308-315.	5.7	34
56	Accounting for mediation in cyclist-vehicle crash models: A Bayesian mediation analysis approach. Accident Analysis and Prevention, 2019, 131, 122-130.	5.7	27
57	Bayesian hierarchical modeling of the non-stationary traffic conflict extremes for crash estimation. Analytic Methods in Accident Research, 2019, 23, 100100.	8.2	38
58	Bayesian hierarchical modeling of trafi $ eglicitie{r}$ e conï–,ict extremes for crash estimation: A non-stationary peak over threshold approach. Analytic Methods in Accident Research, 2019, 24, 100106.	8.2	29
59	A Novel Approach for Identifying, Diagnosing, and Treating Active Transportation Safety Issues. Transportation Research Record, 2019, 2673, 813-823.	1.9	6
60	Transferability of real-time safety performance functions for signalized intersections. Accident Analysis and Prevention, 2019, 129, 263-276.	5.7	22
61	Does Automated Enforcement Presence Impact Collisions and Crime?. Transportation Research Record, 2019, 2673, 522-531.	1.9	2
62	Use of Objective Safety Evidence to Deploy Automated Enforcement Resources. Transportation Research Record, 2019, 2673, 726-735.	1.9	1
63	From univariate to bivariate extreme value models: Approaches to integrate traffic conflict indicators for crash estimation. Transportation Research Part C: Emerging Technologies, 2019, 103, 211-225.	7.6	74
64	Comparison of Traffic Conflict Indicators for Crash Estimation using Peak Over Threshold Approach. Transportation Research Record, 2019, 2673, 493-502.	1.9	63
65	Analysis of Crash Rates at Freeway Diverge Areas using Bayesian Tobit Modeling Framework. Transportation Research Record, 2019, 2673, 652-662.	1.9	25
66	Risk and Reliability Analysis of Geometric Design Criteria: A Critical Synthesis. Transportation Research Record, 2019, 2673, 386-398.	1.9	10
67	Application of Extreme Value Theory for Before-After Road Safety Analysis. Transportation Research Record, 2019, 2673, 1001-1010.	1.9	40
68	A comparison between simulated and field-measured conflicts for safety assessment of signalized intersections in Australia. Transportation Research Part C: Emerging Technologies, 2019, 101, 96-110.	7.6	89
69	Do Simulated Traffic Conflicts Predict Crashes? An Investigation Using the Extreme Value Approach*. , 2019, , .		7
70	Validating the bivariate extreme value modeling approach for road safety estimation with different traffic conflict indicators. Accident Analysis and Prevention, 2019, 123, 314-323.	5.7	96
71	Validation of an agent-based microscopic pedestrian simulation model in a crowded pedestrian walking environment. Transportation Planning and Technology, 2019, 42, 1-22.	2.0	14
72	Characterization of bicycle following and overtaking maneuvers on cycling paths. Transportation Research Part C: Emerging Technologies, 2019, 98, 139-151.	7.6	34

#	Article	IF	CITATIONS
73	Full Bayesian conflict-based models for real time safety evaluation of signalized intersections. Accident Analysis and Prevention, 2019, 129, 367-381.	5.7	75
74	Evaluating the safety impacts of powered two wheelers on a shared roadway in China using automated video analysis. Journal of Transportation Safety and Security, 2019, 11, 414-429.	1.6	32
75	A cross-comparison of different techniques for modeling macro-level cyclist crashes. Accident Analysis and Prevention, 2018, 113, 38-46.	5.7	98
76	Automated Analysis of Pedestrian Group Behavior in Urban Settings. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 1880-1889.	8.0	41
77	Optimal route risk-based algorithm for hazardous material transport in Kuwait. Journal of Loss Prevention in the Process Industries, 2018, 52, 40-53.	3.3	18
78	Traffic conflict models to evaluate the safety of signalized intersections at the cycle level. Transportation Research Part C: Emerging Technologies, 2018, 89, 289-302.	7.6	109
79	Automated class identification of modes of travel in shared spaces: a case study from India. IET Intelligent Transport Systems, 2018, 12, 765-773.	3.0	2
80	A Methodology for the Microscopic Calibration of Agent-Based Pedestrian Simulation Models. , 2018, ,		3
81	Before-after safety analysis using extreme value theory: A case of left-turn bay extension. Accident Analysis and Prevention, 2018, 121, 258-267.	5.7	53
82	Exploring Evasive Action–Based Indicators for PTW Conflicts in Shared Traffic Facility Environments. Journal of Transportation Engineering Part A: Systems, 2018, 144, .	1.4	22
83	Validation of an Agent-based Microscopic Pedestrian Simulation Model at the Pedestrian Walkway of Brooklyn Bridge. Transportation Research Record, 2018, 2672, 33-45.	1.9	5
84	Assessing the Effect of Pedestrians' Use of Cell Phones on Their Walking Behavior: A Study Based on Automated Video Analysis. Transportation Research Record, 2018, 2672, 46-57.	1.9	45
85	Road users' behavior and safety analysis of pedestrian–bike shared space: case study of Robson Street in Vancouver. Canadian Journal of Civil Engineering, 2018, 45, 1053-1064.	1.3	13
86	Evaluating the safety and operational impacts of left-turn bay extension at signalized intersections using automated video analysis. Accident Analysis and Prevention, 2018, 120, 13-27.	5.7	25
87	A Novel Technique to Identify Hot Zones for Active Commuters' Crashes. Transportation Research Record, 2018, 2672, 266-276.	1.9	6
88	Bivariate extreme value modeling for road safety estimation. Accident Analysis and Prevention, 2018, 120, 83-91.	5.7	65
89	A bi-directional agent-based pedestrian microscopic model. Transportmetrica A: Transport Science, 2017, 13, 326-355.	2.0	30
90	Automated analysis of pedestrian walking behaviour at a signalised intersection in China. IET Intelligent Transport Systems, 2017, 11, 28-36.	3.0	22

#	Article	IF	CITATIONS
91	School zone safety diagnosis using automated conflicts analysis technique. Canadian Journal of Civil Engineering, 2017, 44, 802-812.	1.3	2
92	Models for estimating zone-level bike kilometers traveled using bike network, land use, and road facility variables. Transportation Research, Part A: Policy and Practice, 2017, 96, 14-28.	4.2	21
93	Validation of an Agent-Based Microscopic Pedestrian Simulation Model at a Scramble Phase Signalized Intersection. Transportation Research Record, 2017, 2661, 30-42.	1.9	5
94	Evaluating the impact of connectivity, continuity, and topography of sidewalk network on pedestrian safety. Accident Analysis and Prevention, 2017, 107, 117-125.	5.7	57
95	Investigating the effect of spatial and mode correlations on active transportation safety modeling. Analytic Methods in Accident Research, 2017, 16, 60-74.	8.2	34
96	Comparison of Time-Proximity and Evasive Action Conflict Measures: Case Studies from Five Cities. Transportation Research Record, 2017, 2661, 19-29.	1.9	25
97	Macro-spatial approach for evaluating the impact of socio-economics, land use, built environment, and road facility on pedestrian safety. Canadian Journal of Civil Engineering, 2017, 44, 1036-1044.	1.3	27
98	Examining pedestrian evasive actions as a potential indicator for traffic conflicts. IET Intelligent Transport Systems, 2017, 11, 282-289.	3.0	19
99	Traffic Conflict–Based Before–After Study with Use of Comparison Groups and the Empirical Bayes Method. Transportation Research Record, 2017, 2659, 15-24.	1.9	15
100	Evaluating the Impact of Socioeconomics, Land Use, Built Environment, and Road Facility on Cyclist Safety. Transportation Research Record, 2017, 2659, 33-42.	1.9	24
101	Developing Macrolevel Collision Prediction Models to Evaluate Bicycle Safety in Vancouver, British Columbia, Canada. Transportation Research Record, 2017, 2659, 25-32.	1.9	1
102	Reliability-Based Analysis of Sight Distance Modelling for Traffic Safety. Journal of Advanced Transportation, 2017, 2017, 1-12.	1.7	19
103	Computer vision approach for the classification of bike type (motorized versus nonâ€motorized) during busy traffic in the city of Shanghai. Journal of Advanced Transportation, 2016, 50, 348-362.	1.7	16
104	Automated cyclist data collection under high density conditions. IET Intelligent Transport Systems, 2016, 10, 361-369.	3.0	8
105	Analysis of Road User Behavior and Safety During New York City's Summer Streets Program. Transportation Research Record, 2016, 2586, 120-130.	1.9	5
106	Crash Modification Functions for Installation of Left-Turn Lanes at Signalized Intersection Approaches. Transportation Research Record, 2016, 2583, 42-49.	1.9	4
107	Comprehensive Safety Diagnosis Using Automated Video Analysis: Applications to an Urban Intersection in Edmonton, Alberta, Canada. Transportation Research Record, 2016, 2601, 138-152.	1.9	7
108	Before–After Safety Evaluation Using Full Bayesian Macroscopic Multivariate and Spatial Models. Transportation Research Record, 2016, 2601, 128-137.	1.9	13

#	Article	IF	CITATIONS
109	Safety evaluation of unconventional outside left-turn lane using automated traffic conflict techniques. Canadian Journal of Civil Engineering, 2016, 43, 631-642.	1.3	34
110	Developing evasive actionâ€based indicators for identifying pedestrian conflicts in less organized traffic environments. Journal of Advanced Transportation, 2016, 50, 1193-1208.	1.7	42
111	Framework for evaluating risk of limited sight distance for permitted left-turn movements: case study. Canadian Journal of Civil Engineering, 2016, 43, 369-377.	1.3	13
112	Automated Roundabout Safety Analysis: Diagnosis and Remedy of Safety Problems. Journal of Transportation Engineering, 2016, 142, .	0.9	23
113	Evaluating the impact of bike network indicators on cyclist safety using macro-level collision prediction models. Accident Analysis and Prevention, 2016, 97, 28-37.	5.7	44
114	Automated Pedestrians Data Collection Using Computer Vision. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2016, , 31-43.	0.3	0
115	Evaluating the safety impact of increased speed limits on rural highways in British Columbia. Accident Analysis and Prevention, 2016, 95, 172-177.	5.7	15
116	Conflict-Based Safety Performance Functions for Predicting Traffic Collisions by Type. Transportation Research Record, 2016, 2583, 50-55.	1.9	39
117	Evaluating Safety Benefits of the Insurance Corporation of British Columbia Road Improvement Program Using a Full Bayes Approach. Transportation Research Record, 2016, 2582, 26-33.	1.9	2
118	Multi-mode reliability-based design of horizontal curves. Accident Analysis and Prevention, 2016, 93, 124-134.	5.7	32
119	A full Bayes before-after study accounting for temporal and spatial effects: Evaluating the safety impact of new signal installations. Accident Analysis and Prevention, 2016, 94, 52-58.	5.7	16
120	A comparison between PARAMICS and VISSIM in estimating automated fieldâ€measured traffic conflicts at signalized intersections. Journal of Advanced Transportation, 2016, 50, 897-917.	1.7	31
121	Bayesian estimation of conflict-based safety performance functions. Journal of Transportation Safety and Security, 2016, 8, 266-279.	1.6	30
122	An inclusive framework for automatic safety evaluation of roundabouts. Journal of Transportation Safety and Security, 2016, 8, 377-394.	1.6	8
123	Exploring walking gait features for the automated recognition of distracted pedestrians. IET Intelligent Transport Systems, 2016, 10, 106-113.	3.0	13
124	Automated Pedestrian Safety Analysis at a Signalized Intersection in New York City: Automated Data Extraction for Safety Diagnosis and Behavioral Study. Transportation Research Record, 2015, 2519, 17-27.	1.9	34
125	Microscopic Pedestrian Interaction Behavior Analysis Using Gait Parameters. Transportation Research Record, 2015, 2519, 28-38.	1.9	22
126	Can Time Proximity Measures be Used as Safety Indicators in All Driving Cultures?. Transportation Research Record, 2015, 2520, 165-174.	1.9	52

#	Article	IF	CITATIONS
127	Development of a cycling data model: City of Vancouver case study. Canadian Journal of Civil Engineering, 2015, 42, 1000-1010.	1.3	25
128	Assessing Safety Improvements to Pedestrian Crossings Using Automated Conflict Analysis. Transportation Research Record, 2015, 2514, 58-67.	1.9	3
129	Automated Region-Based Vehicle Conflict Detection Using Computer Vision Techniques. Transportation Research Record, 2015, 2528, 49-59.	1.9	2
130	A unidirectional agent based pedestrian microscopic model. Canadian Journal of Civil Engineering, 2015, 42, 1114-1124.	1.3	14
131	The use of gait parameters to evaluate pedestrian behavior at scramble phase signalized intersections. Journal of Advanced Transportation, 2015, 49, 523-534.	1.7	20
132	Simulated Traffic Conflicts. Transportation Research Record, 2015, 2514, 48-57.	1.9	65
133	Multivariate Full Bayesian Hot Spot Identification and Ranking. Transportation Research Record, 2015, 2515, 1-9.	1.9	17
134	Automated Analysis and Validation of Right-Turn Merging Behavior. Journal of Transportation Safety and Security, 2015, 7, 138-152.	1.6	15
135	Developing crash modification functions for pedestrian signal improvement. Accident Analysis and Prevention, 2015, 83, 47-56.	5.7	6
136	Investigating the accuracy of Bayesian techniques for before–after safety studies: The case of a "no treatment―evaluation. Accident Analysis and Prevention, 2015, 78, 138-145.	5.7	24
137	Transferability of calibrated microsimulation model parameters for safety assessment using simulated conflicts. Accident Analysis and Prevention, 2015, 84, 41-53.	5.7	72
138	Calibrating Road Design Guides Using Risk-Based Reliability Analysis. Journal of Transportation Engineering, 2014, 140, .	0.9	34
139	Bus networks as graphs: new connectivity indicators with operational characteristics. Canadian Journal of Civil Engineering, 2014, 41, 788-799.	1.3	7
140	Pedestrian gait analysis using automated computer vision techniques. Transportmetrica A: Transport Science, 2014, 10, 214-232.	2.0	37
141	Accounting for heterogeneity among treatment sites and time trends in developing crash modification functions. Accident Analysis and Prevention, 2014, 72, 116-126.	5.7	20
142	Collision modification functions: Incorporating changes over time. Accident Analysis and Prevention, 2014, 70, 46-54.	5.7	28
143	Using automated walking gait analysis for the identification of pedestrian attributes. Transportation Research Part C: Emerging Technologies, 2014, 48, 16-36.	7.6	24
144	Automated Analysis of Pedestrian Crossing Speed Behavior at Scramble-phase Signalized Intersections Using Computer Vision Techniques. International Journal of Sustainable Transportation, 2014, 8, 382-397.	4.1	23

#	Article	IF	CITATIONS
145	Sight Distance Standards Based on Observational Data Risk Evaluation of Passing. Transportation Research Record, 2014, 2404, 18-26.	1.9	16
146	Use of Drivers' Jerk Profiles in Computer Vision–Based Traffic Safety Evaluations. Transportation Research Record, 2014, 2434, 103-112.	1.9	59
147	A framework for an on-demand dangerous goods routing support system for the metro Vancouver area. Journal of Engineering Research, 2014, 2, .	0.7	1
148	Automated Analysis of Pedestrians' Nonconforming Behavior and Data Collection at an Urban Crossing. Transportation Research Record, 2014, 2443, 123-133.	1.9	18
149	Computer Vision Techniques to Collect Helmet-Wearing Data on Cyclists. Transportation Research Record, 2014, 2468, 1-10.	1.9	9
150	A methodology for precise camera calibration for data collection applications in urban traffic scenes. Canadian Journal of Civil Engineering, 2013, 40, 57-67.	1.3	88
151	How drivers adapt to drive in driving simulator, and what is the impact of practice scenario on the research?. Transportation Research Part F: Traffic Psychology and Behaviour, 2013, 16, 41-52.	3.7	24
152	Automated safety diagnosis of vehicle–bicycle interactions using computer vision analysis. Safety Science, 2013, 59, 163-172.	4.9	150
153	A framework for automated road-users classification using movement trajectories. Transportation Research Part C: Emerging Technologies, 2013, 33, 50-73.	7.6	55
154	Safety models incorporating graph theory based transit indicators. Accident Analysis and Prevention, 2013, 50, 635-644.	5.7	28
155	Depth-based hotspot identification and multivariate ranking using the full Bayes approach. Accident Analysis and Prevention, 2013, 50, 1082-1089.	5.7	12
156	Evaluating the Signal Head Upgrade Program in the City of Surrey. Accident Analysis and Prevention, 2013, 50, 1236-1243.	5.7	4
157	Safety performance functions using traffic conflicts. Safety Science, 2013, 51, 160-164.	4.9	174
158	A comparison of collision-based and conflict-based safety evaluations: The case of right-turn smart channels. Accident Analysis and Prevention, 2013, 59, 260-266.	5.7	75
159	Analysis of unconventional arterial intersection designs (UAIDs): state-of-the-art methodologies and future research directions. Transportmetrica A: Transport Science, 2013, 9, 860-895.	2.0	49
160	Application of Computer Vision to Diagnosis of Pedestrian Safety Issues. Transportation Research Record, 2013, 2393, 75-84.	1.9	56
161	Development of Daily Adjustment Factors for Bicycle Traffic. Journal of Transportation Engineering, 2013, 139, 859-871.	0.9	43
162	Classifying Road Users in Urban Scenes Using Movement Patterns. Journal of Computing in Civil Engineering, 2013, 27, 395-406.	4.7	5

#	Article	IF	CITATIONS
163	Operational performance comparison of four unconventional intersection designs using micro-simulation. Journal of Advanced Transportation, 2013, 47, 536-552.	1.7	47
164	Spatial Effects on Zone-Level Collision Prediction Models. Transportation Research Record, 2013, 2398, 50-59.	1.9	15
165	Full Bayes Before-and-After Evaluation of Traffic Safety Improvements in City of Edmonton, Canada. Transportation Research Record, 2013, 2386, 189-194.	1.9	2
166	Use of Spatiotemporal Parameters of Gait for Automated Classification of Pedestrian Gender and Age. Transportation Research Record, 2013, 2393, 31-40.	1.9	7
167	Computer Vision Techniques for the Automated Collection of Cyclist Data. Transportation Research Record, 2013, 2387, 10-19.	1.9	24
168	Investigating Effect of Collision Aggregation on Safety Evaluations with Models of Multivariate Linear Intervention. Transportation Research Record, 2012, 2280, 110-117.	1.9	0
169	Use of Computer Vision to Identify Pedestrians' Nonconforming Behavior at Urban Intersections. Transportation Research Record, 2012, 2279, 54-64.	1.9	16
170	Linear and Nonlinear Safety Intervention Models. Transportation Research Record, 2012, 2280, 28-37.	1.9	20
171	A framework for neighbour links travel time estimation in an urban network. Transportation Planning and Technology, 2012, 35, 281-301.	2.0	6
172	Feasibility of Computer Vision-Based Safety Evaluations. Transportation Research Record, 2012, 2280, 18-27.	1.9	43
173	Evaluating safety risk of locating above ground utility structures in the highway right-of-way. Accident Analysis and Prevention, 2012, 49, 419-428.	5.7	11
174	Methodology for safety optimization of highway cross-sections for horizontal curves with restricted sight distance. Accident Analysis and Prevention, 2012, 49, 476-485.	5.7	43
175	Automated Collection of Pedestrian Data through Computer Vision Techniques. Transportation Research Record, 2012, 2299, 121-127.	1.9	31
176	Safety evaluation of right-turn smart channels using automated traffic conflict analysis. Accident Analysis and Prevention, 2012, 45, 120-130.	5.7	118
177	Measuring safety treatment effects using full Bayes non-linear safety performance intervention functions. Accident Analysis and Prevention, 2012, 45, 152-163.	5.7	52
178	A large margin framework for single camera offline tracking with hybrid cues. Computer Vision and Image Understanding, 2012, 116, 676-689.	4.7	27
179	Measuring direct and indirect treatment effects using safety performance intervention functions. Safety Science, 2012, 50, 1125-1132.	4.9	39
180	Risk-optimal highway design: Methodology and case studies. Safety Science, 2012, 50, 1513-1521.	4.9	26

#	Article	IF	CITATIONS
181	Operational performance analysis of the unconventional median U-turn intersection design. Canadian Journal of Civil Engineering, 2011, 38, 1249-1261.	1.3	32
182	Methodologies for Aggregating Indicators of Traffic Conflict. Transportation Research Record, 2011, 2237, 10-19.	1.9	83
183	Using buses as probes for neighbor links travel time estimation in an urban network. Transportation Letters, 2011, 3, 279-292.	3.1	8
184	Automated Detection of Spatial Traffic Violations through use of Video Sensors. Transportation Research Record, 2011, 2241, 87-98.	1.9	11
185	Developing safety performance functions incorporating reliability-based risk measures. Accident Analysis and Prevention, 2011, 43, 2153-2159.	5.7	55
186	Unconventional USC intersection corridors: evaluation of potential implementation in Doha, Qatar. Journal of Advanced Transportation, 2011, 45, 38-53.	1.7	14
187	A full Bayes multivariate intervention model with random parameters among matched pairs for before–after safety evaluation. Accident Analysis and Prevention, 2011, 43, 87-94.	5.7	78
188	Travel time estimation in urban networks using limited probes data. Canadian Journal of Civil Engineering, 2011, 38, 305-318.	1.3	17
189	Estimation of Frequency and Length of Pedestrian Stride in Urban Environments with Video Sensors. Transportation Research Record, 2011, 2264, 138-147.	1.9	28
190	Impact of Rumble Strips on Collision Reduction on Highways in British Columbia, Canada: Comprehensive Before-and-After Safety Study. Transportation Research Record, 2010, 2148, 9-15.	1.9	24
191	Full Bayes Approach to Before-and-After Safety Evaluation with Matched Comparisons: Case Study of Stop-Sign In-Fill Program. Transportation Research Record, 2010, 2148, 1-8.	1.9	41
192	Simulation and Evaluation of Automated Vehicle Identification at Weigh-in-Motion Inspection Stations. Transportation Research Record, 2010, 2160, 140-150.	1.9	3
193	A method to account for outliers in the development of safety performance functions. Accident Analysis and Prevention, 2010, 42, 1266-1272.	5.7	21
194	Safety performance functions with measurement errors in traffic volume. Safety Science, 2010, 48, 1339-1344.	4.9	27
195	Transferability of Community-Based Collision Prediction Models for Use in Road Safety Planning Applications. Journal of Transportation Engineering, 2010, 136, 871-880.	0.9	22
196	Community-Based, Macrolevel Collision Prediction Model Use with a Regional Transportation Plan. Journal of Transportation Engineering, 2010, 136, 120-128.	0.9	16
197	Insight into Steering Adaptation Patterns in a Driving Simulator. Transportation Research Record, 2010, 2185, 33-39.	1.9	12
198	Risk-Based Highway Design. Transportation Research Record, 2010, 2195, 3-13.	1.9	43

#	Article	IF	CITATIONS
199	Automated Analysis of Pedestrian–Vehicle Conflicts. Transportation Research Record, 2010, 2198, 52-64.	1.9	130
200	Application of generalized link functions in developing accident prediction models. Safety Science, 2010, 48, 410-416.	4.9	21
201	Large-Scale Automated Analysis of Vehicle Interactions and Collisions. Transportation Research Record, 2010, 2147, 42-50.	1.9	137
202	Max-Margin Offline Pedestrian Tracking with Multiple Cues. , 2010, , .		2
203	Methodology to Analyze Adaptation in Driving Simulators. Transportation Research Record, 2009, 2138, 94-101.	1.9	11
204	Urban Arterial Accident Prediction Models with Spatial Effects. Transportation Research Record, 2009, 2102, 27-33.	1.9	92
205	Collision prediction models using multivariate Poisson-lognormal regression. Accident Analysis and Prevention, 2009, 41, 820-828.	5.7	192
206	Accident prediction models with random corridor parameters. Accident Analysis and Prevention, 2009, 41, 1118-1123.	5.7	178
207	Automated Analysis of Pedestrian–Vehicle Conflicts Using Video Data. Transportation Research Record, 2009, 2140, 44-54.	1.9	154
208	Risk-based framework for accommodating uncertainty in highway geometric design. Canadian Journal of Civil Engineering, 2009, 36, 743-753.	1.3	44
209	Development of Dynamic Transit Signal Priority Strategy. Transportation Research Record, 2009, 2111, 1-9.	1.9	62
210	Modeling Driver Behavior and Safety on Freeway Merging Areas. Journal of Transportation Engineering, 2008, 134, 370-377.	0.9	75
211	Probabilistic Framework for Automated Analysis of Exposure to Road Collisions. Transportation Research Record, 2008, 2083, 96-104.	1.9	102
212	Evaluation of Edmontonâ \in Ms intersection safety camera program. , 2008, , .		1
213	Development and comparison of dynamic transit signal priority strategies. , 2008, , .		0
214	Probabilistic framework for calibrating of highway geometric design models. , 2008, , .		0
215	Comparison of Two Unconventional Intersection Schemes. Transportation Research Record, 2007, 2023, 10-19.	1.9	46
216	Evaluating Impact on Safety of Improved Signal Visibility at Urban Signalized Intersections. Transportation Research Record, 2007, 2019, 51-56.	1.9	10

#	Article	IF	CITATIONS
217	Probabilistic Collision Prediction for Vision-Based Automated Road Safety Analysis. , 2007, , .		41
218	New Algorithm for Calculating 3D Available Sight Distance. Journal of Transportation Engineering, 2007, 133, 572-581.	0.9	28
219	Automated Analysis of Road Safety with Video Data. Transportation Research Record, 2007, 2019, 57-64.	1.9	101
220	Evaluation of Intersection Safety Camera Program in Edmonton, Canada. Transportation Research Record, 2007, 2009, 37-45.	1.9	13
221	Modeling Freeway Diverging Behavior on Deceleration Lanes. Transportation Research Record, 2007, 2012, 30-37.	1.9	25
222	Macrolevel Collision Prediction Models to Enhance Traditional Reactive Road Safety Improvement Programs. Transportation Research Record, 2007, 2019, 65-73.	1.9	35
223	Traffic accident modeling: some statistical issues. Canadian Journal of Civil Engineering, 2006, 33, 1115-1124.	1.3	75
224	Evaluating the Safety Risk of Narrow Medians Using Reliability Analysis. Journal of Transportation Engineering, 2006, 132, 366-375.	0.9	53
225	Macro-level collision prediction models for evaluating neighbourhood traffic safety. Canadian Journal of Civil Engineering, 2006, 33, 609-621.	1.3	105
226	Upstream Signalized Crossover Intersection. Transportation Research Record, 2006, 1961, 44-54.	1.9	6
227	Using Macrolevel Collision Prediction Models in Road Safety Planning Applications. Transportation Research Record, 2006, 1950, 73-82.	1.9	19
228	Comparison of Two Negative Binomial Regression Techniques in Developing Accident Prediction Models. Transportation Research Record, 2006, 1950, 9-16.	1.9	68
229	Safety Evaluation of Stop Sign In-Fill Program. Transportation Research Record, 2006, 1953, 201-210.	1.9	2
230	Transferability of accident prediction models. Safety Science, 2006, 44, 209-219.	4.9	48
231	Upstream Signalized Crossover Intersection: An Unconventional Intersection Scheme. Journal of Transportation Engineering, 2006, 132, 907-911.	0.9	24
232	Comparison of Two Negative Binomial Regression Techniques in Developing Accident Prediction Models. Transportation Research Record, 2006, 1950, 9-16.	1.9	43
233	Using Macrolevel Collision Prediction Models in Road Safety Planning Applications. Transportation Research Record, 2006, 1950, 73-82.	1.9	26
234	Upstream Signalized Crossover Intersection: Optimization and Performance Issues. Transportation Research Record, 2006, 1961, 44-54.	1.9	4

#	Article	IF	CITATIONS
235	Effect of speed prediction models and perceived radius on design consistency. Canadian Journal of Civil Engineering, 2005, 32, 388-399.	1.3	22
236	Predicting the safety performance associated with highway design decisions: A case study of the Sea to Sky Highway. Canadian Journal of Civil Engineering, 2005, 32, 352-360.	1.3	9
237	Influence of vertical alignment on horizontal curve perception: effect of spirals and position of vertical curve. Canadian Journal of Civil Engineering, 2005, 32, 204-212.	1.3	13
238	A driver visual attention model. Part 1. Conceptual framework. Canadian Journal of Civil Engineering, 2004, 31, 463-472.	1.3	6
239	Evaluating the Insurance Corporation of British Columbia Road-Safety Improvement Program. Transportation Research Record, 2004, 1865, 57-63.	1.9	36
240	Effect of geometric design consistency on road safety. Canadian Journal of Civil Engineering, 2004, 31, 218-227.	1.3	71
241	Impacts of Various Parameters on Transit Signal Priority Effectiveness. Journal of Public Transportation, 2004, 7, 71-93.	1.2	61
242	Comparison of Adaptive Network Based Fuzzy Inference Systems and B-spline Neuro-Fuzzy Mode Choice Models. Journal of Computing in Civil Engineering, 2003, 17, 123-130.	4.7	53
243	Using the Canadian ITS architecture for evaluating the safety benefits of intelligent transportation systems. Canadian Journal of Civil Engineering, 2003, 30, 970-980.	1.3	4
244	A framework to proactively consider road safety within the road planning process. Canadian Journal of Civil Engineering, 2003, 30, 711-719.	1.3	26
245	Estimating Safety Benefits of Road Improvements: Case Based Approach. Journal of Transportation Engineering, 2003, 129, 385-391.	0.9	10
246	Comparison of Two Neuro-Fuzzy Approaches Applied to Mode Choice Modeling. , 2002, , 869.		0
247	Development of a Road Safety Risk Index. Transportation Research Record, 2002, 1784, 33-42.	1.9	41
248	Use of Computer Animation in Quantifying Driver Perception of Three-Dimensional Road Alignments. , 2002, , 877.		0
249	Bus Travel Time Prediction Using AVL and APC. , 2002, , 616.		7
250	Influence of Vertical Alignment on Horizontal Curve Perception: Phase I: Examining the Hypothesis. Transportation Research Record, 2002, 1796, 12-23.	1.9	25
251	Influence of Vertical Alignment on Horizontal Curve Perception: Phase II: Modeling Perceived Radius. Transportation Research Record, 2002, 1796, 24-34.	1.9	20
252	Effect of driver and road characteristics on required preview sight distance. Canadian Journal of Civil Engineering, 2002, 29, 276-288.	1.3	8

#	Article	IF	CITATIONS
253	Forecasting cyanobacterium Anabaena spp. in the River Murray, South Australia, using B-spline neurofuzzy models. Ecological Modelling, 2001, 146, 85-96.	2.5	28
254	Evaluating Safety of Urban Arterial Roadways. Journal of Transportation Engineering, 2001, 127, 151-158.	0.9	105
255	Establishing Practical Approach for Design Consistency Evaluation. Journal of Transportation Engineering, 2001, 127, 295-302.	0.9	45
256	Using claims prediction model for road safety evaluation. Canadian Journal of Civil Engineering, 2001, 28, 804-812.	1.3	8
257	Using claims prediction model for road safety evaluation. Canadian Journal of Civil Engineering, 2001, 28, 804-812.	1.3	0
258	Comparison of Neural and Conventional Approaches to Mode Choice Analysis. Journal of Computing in Civil Engineering, 2000, 14, 23-30.	4.7	42
259	Forecasting Cyanobacterial Concentrations Using B-Spline Networks. Journal of Computing in Civil Engineering, 2000, 14, 183-189.	4.7	21
260	High-Occupancy Vehicle Monitoring and Evaluation Framework. Transportation Research Record, 1999, 1682, 38-45.	1.9	4
261	FREIGHT MODE CHOICE MODELS USING ARTIFICIAL NEURAL NETWORKS. Civil Engineering and Environmental Systems, 1999, 16, 267-286.	0.9	17
262	Traffic conflict standards for intersections. Transportation Planning and Technology, 1999, 22, 309-323.	2.0	226
263	Accident Prediction Models for Urban Unsignalized Intersections in British Columbia. Transportation Research Record, 1999, 1665, 93-99.	1.9	48
264	Comparison of Fuzzy and Neural Classifiers for Road Accidents Analysis. Journal of Computing in Civil Engineering, 1998, 12, 42-47.	4.7	23
265	Safety Evaluation of Alternative Signal Head Design. Transportation Research Record, 1998, 1635, 140-146.	1.9	10
266	Using Accident Correctability to Identify Accident-Prone Locations. Journal of Transportation Engineering, 1997, 123, 107-113.	0.9	6
267	THE HIGHWAY SAFETY EXPERT SYSTEM: DIAGNOSING ACCIDENT PRONE LOCATIONS. Civil Engineering and Environmental Systems, 1997, 14, 251-267.	0.2	0
268	Identifying Accident-Prone Locations Using Fuzzy Pattern Recognition. Journal of Transportation Engineering, 1995, 121, 352-358.	0.9	53
269	Simulation of traffic conflicts at unsignalized intersections with TSC-Sim. Accident Analysis and Prevention, 1994, 26, 593-607.	5.7	92

270 A feature-based tracking algorithm for vehicles in intersections. , 0, , .

97