Laurence J Hardwick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1819229/publications.pdf Version: 2024-02-01

		53660	33814
115	16,811	45	99
papers	citations	h-index	g-index
			_
122	122	122	16002
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Li–O2 and Li–S batteries with high energy storage. Nature Materials, 2012, 11, 19-29.	13.3	8,166
2	Reactions in the Rechargeable Lithium–O ₂ Battery with Alkyl Carbonate Electrolytes. Journal of the American Chemical Society, 2011, 133, 8040-8047.	6.6	1,157
3	The Lithium–Oxygen Battery with Etherâ€Based Electrolytes. Angewandte Chemie - International Edition, 2011, 50, 8609-8613.	7.2	1,009
4	Lithium Diffusion in Graphitic Carbon. Journal of Physical Chemistry Letters, 2010, 1, 1176-1180.	2.1	662
5	Oxygen Reactions in a Nonâ€Aqueous Li ⁺ Electrolyte. Angewandte Chemie - International Edition, 2011, 50, 6351-6355.	7.2	518
6	Lithium-air and lithium-sulfur batteries. MRS Bulletin, 2011, 36, 506-512.	1.7	272
7	<i>Insitu</i> Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discussions, 2014, 172, 223-237.	1.6	271
8	Surface structural disordering in graphite upon lithium intercalation/deintercalation. Journal of Power Sources, 2010, 195, 3655-3660.	4.0	260
9	Lithium Intercalation into Mesoporous Anatase with an Ordered 3D Pore Structure. Angewandte Chemie - International Edition, 2010, 49, 2570-2574.	7.2	218
10	Nano silicon for lithium-ion batteries. Electrochimica Acta, 2006, 52, 973-978.	2.6	191
11	Three-dimensional protonic conductivity in porous organic cage solids. Nature Communications, 2016, 7, 12750.	5.8	133
12	An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite. Electrochimica Acta, 2006, 52, 675-680.	2.6	128
13	Electrochemical lithium insertion into anatase-type TiO2: An in situ Raman microscopy investigation. Electrochimica Acta, 2007, 52, 5357-5367.	2.6	124
14	Raman study of lithium coordination in EMI-TFSI additive systems as lithium-ion battery ionic liquid electrolytes. Journal of Raman Spectroscopy, 2007, 38, 110-112.	1.2	121
15	Lithium Insertion into Anatase Nanotubes. Chemistry of Materials, 2012, 24, 4468-4476.	3.2	110
16	In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects. Journal of Physics and Chemistry of Solids, 2008, 69, 1232-1237.	1.9	103
17	Charge storage mechanism of activated manganese oxide composites for pseudocapacitors. Journal of Materials Chemistry A, 2015, 3, 12786-12795.	5.2	95
18	The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes. Current Opinion in Solid State and Materials Science, 2012, 16, 178-185.	5.6	94

#	Article	IF	CITATIONS
19	Utilizing in Situ Electrochemical SHINERS for Oxygen Reduction Reaction Studies in Aprotic Electrolytes. Journal of Physical Chemistry Letters, 2016, 7, 2119-2124.	2.1	88
20	Microwave plasma chemical vapor deposition of nano-structured Sn/C composite thin-film anodes for Li-ion batteries. Journal of Power Sources, 2007, 173, 965-971.	4.0	87
21	Advanced in situ characterization methods applied to carbonaceous materials. Journal of Power Sources, 2005, 146, 15-20.	4.0	80
22	Surface reactivity of graphite materials and their surface passivation during the first electrochemical lithium insertion. Journal of Power Sources, 2006, 153, 300-311.	4.0	79
23	Mechanistic Insight into the Superoxide Induced Ring Opening in Propylene Carbonate Based Electrolytes using in Situ Surface-Enhanced Infrared Spectroscopy. Journal of the American Chemical Society, 2016, 138, 3745-3751.	6.6	79
24	A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrode. Journal of the American Chemical Society, 2022, 144, 9434-9442.	6.6	77
25	Direct Detection of Discharge Products in Lithium–Oxygen Batteries by Solid‣tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 8560-8563.	7.2	75
26	A highly active nickel electrocatalyst shows excellent selectivity for CO ₂ reduction in acidic media. Chemical Science, 2016, 7, 1521-1526.	3.7	74
27	2020 roadmap on solid-state batteries. JPhys Energy, 2020, 2, 032008.	2.3	74
28	Integrated Covalent Organic Framework/Carbon Nanotube Composite as Liâ€Ion Positive Electrode with Ultraâ€High Rate Performance. Advanced Energy Materials, 2021, 11, 2101880.	10.2	73
29	Graphite surface disorder detection using in situ Raman microscopy. Solid State Ionics, 2006, 177, 2801-2806.	1.3	71
30	Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors. Journal of Power Sources, 2013, 242, 289-298.	4.0	71
31	In Situ Study of Li Intercalation into Highly Crystalline Graphitic Flakes of Varying Thicknesses. Journal of Physical Chemistry Letters, 2016, 7, 4291-4296.	2.1	70
32	Activated Lithium-Metal-Oxides as Catalytic Electrodes for Li–O2 Cells. Electrochemical and Solid-State Letters, 2011, 14, A64.	2.2	66
33	In situ Raman spectroscopy of carbon-coated ZnFe ₂ O ₄ anode material in Li-ion batteries – investigation of SEI growth. Chemical Communications, 2016, 52, 3970-3973.	2.2	64
34	Observation of Interfacial Degradation of Li ₆ PS ₅ Cl against Lithium Metal and LiCoO ₂ via <i>In Situ</i> Electrochemical Raman Microscopy. Batteries and Supercaps, 2020, 3, 647-652.	2.4	63
35	Stabilization of O–O Bonds by d ⁰ Cations in Li _{4+<i>x</i>} Ni _{1–<i>x</i>} WO ₆ (O ≤i>x â‰ฃ.25) Rock Salt Oxide as the Origin of Large Voltage Hysteresis. Journal of the American Chemical Society, 2019, 141, 7333-7346.	e 6. 6	61
36	Criteria appointing the highest acceptable cell voltage of asymmetric supercapacitors.	2.3	60

Electrochemistry Communications, 2013, 27, 81-84.

#	Article	IF	CITATIONS
37	Electrochemical doping of single-walled carbon nanotubes in double layer capacitors studied by in situ Raman spectroscopy. Carbon, 2009, 47, 38-52.	5.4	58
38	Behaviour of highly crystalline graphites in lithium-ion cells with propylene carbonate containing electrolytes. Journal of Power Sources, 2005, 146, 134-141.	4.0	57
39	Behaviour of highly crystalline graphitic materials in lithium-ion cells with propylene carbonate containing electrolytes: An in situ Raman and SEM study. Electrochimica Acta, 2007, 52, 4884-4891.	2.6	56
40	Solventâ€Mediated Control of the Electrochemical Discharge Products of Nonâ€Aqueous Sodium–Oxygen Electrochemistry. Angewandte Chemie - International Edition, 2016, 55, 8254-8257.	7.2	56
41	An Investigation of the Effect of Graphite Degradation on Irreversible Capacity in Lithium-ion Cells. Journal of the Electrochemical Society, 2008, 155, A442.	1.3	54
42	FTIR and Raman Study of the Li[sub x]Ti[sub y]Mn[sub 1â^'y]O[sub 2] (y=0,â€,0.11) Cathodes in Methylpropyl Pyrrolidinium Bis(fluoro-sulfonyl)imide, LiTFSI Electrolyte. Journal of the Electrochemical Society, 2009, 156, A120.	1.3	48
43	A light-weight free-standing graphene foam-based interlayer towards improved Li-S cells. Electrochimica Acta, 2019, 299, 479-488.	2.6	45
44	In Situ Surface-Enhanced Infrared Spectroscopy to Identify Oxygen Reduction Products in Nonaqueous Metal–Oxygen Batteries. Journal of Physical Chemistry C, 2017, 121, 19657-19667.	1.5	42
45	Water oxidation intermediates on iridium oxide electrodes probed by <i>in situ</i> electrochemical SHINERS. Chemical Communications, 2020, 56, 1129-1132.	2.2	41
46	Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries. Annual Review of Analytical Chemistry, 2019, 12, 323-346.	2.8	39
47	Investigating the presence of adsorbed species on Pt steps at low potentials. Nature Communications, 2022, 13, 2550.	5.8	37
48	Electrochemical performance of laser micro-structured nickel oxyhydroxide cathodes. Journal of Power Sources, 2014, 271, 42-47.	4.0	35
49	Shell isolated nanoparticles for enhanced Raman spectroscopy studies in lithium–oxygen cells. Faraday Discussions, 2017, 205, 469-490.	1.6	35
50	Scaling up "Nano―Li ₄ Ti ₅ O ₁₂ for High-Power Lithium-Ion Anodes Using Large Scale Flame Spray Pyrolysis. Journal of the Electrochemical Society, 2015, 162, A2331-A2338.	1.3	32
51	In situ Raman spectroscopic analysis of the lithiation and sodiation of antimony microparticles. Electrochimica Acta, 2017, 247, 296-305.	2.6	32
52	Inâ€Situ Electrochemical SHINERS Investigation of SEI Composition on Carbonâ€Coated Zn _{0.9} Fe _{0.1} O Anode for Lithiumâ€lon Batteries. Batteries and Supercaps, 2019, 2, 168-177.	2.4	32
53	The Effect of Degrees of Inversion on the Electronic Structure of Spinel NiCo ₂ O ₄ : A Density Functional Theory Study. ACS Omega, 2021, 6, 9692-9699.	1.6	32
54	Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry. Nature Communications, 2021, 12, 5561.	5.8	32

#	Article	IF	CITATIONS
55	Dynamics of Solidâ€Electrolyte Interphase Formation on Silicon Electrodes Revealed by Combinatorial Electrochemical Screening. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
56	Rechargeable Multi-Valent Metal-Air Batteries. Johnson Matthey Technology Review, 2018, 62, 134-149.	0.5	31
57	Engineering of electrospun polyimide separators for electrical double-layer capacitors and lithium-ion cells. Journal of Power Sources, 2021, 482, 229054.	4.0	31
58	Lithium Transport in Li4.4M0.4M′0.6S4 (M = Al3+, Ga3+, and M′ = Ge4+, Sn4+): Combined Crystallographic Conductivity, Solid State NMR, and Computational Studies. Chemistry of Materials, 2018, 30, 7183-7200.	3.2	28
59	Characterization of Aluminum Doped Lithium-Manganese Rich Composites for Higher Rate Lithium-Ion Cathodes. Journal of the Electrochemical Society, 2014, 161, A2109-A2116.	1.3	27
60	Kerr gated Raman spectroscopy of LiPF ₆ salt and LiPF ₆ -based organic carbonate electrolyte for Li-ion batteries. Physical Chemistry Chemical Physics, 2019, 21, 23833-23842.	1.3	27
61	Intercalation behaviour of Li and Na into 3-layer and multilayer MoS2 flakes. Electrochimica Acta, 2020, 331, 135284.	2.6	26
62	Oxygen reactions on Pt{ <i>hkl</i> } in a non-aqueous Na ⁺ electrolyte: site selective stabilisation of a sodium peroxy species. Chemical Science, 2019, 10, 2956-2964.	3.7	25
63	The role of re-aggregation on the performance of electrochemically exfoliated many-layer graphene for Li-ion batteries. Journal of Electroanalytical Chemistry, 2015, 753, 35-41.	1.9	24
64	Divalent Nonaqueous Metal-Air Batteries. Frontiers in Energy Research, 2021, 8, .	1.2	24
65	Time-resolved SERS study of the oxygen reduction reaction in ionic liquid electrolytes for non-aqueous lithium–oxygen cells. Faraday Discussions, 2018, 206, 379-392.	1.6	23
66	Evaluating chemical bonding in dioxides for the development of metal–oxygen batteries: vibrational spectroscopic trends of dioxygenyls, dioxygen, superoxides and peroxides. Physical Chemistry Chemical Physics, 2019, 21, 1552-1563.	1.3	22
67	Raman spectroscopic and structural studies of heat-treated graphites for lithium-ion batteries. Ionics, 2003, 9, 258-265.	1.2	19
68	Data Management Plans: the Importance of Data Management in the BIGâ€MAP Project**. Batteries and Supercaps, 2021, 4, 1803-1812.	2.4	19
69	Influence of Tetraalkylammonium Cation Chain Length on Gold and Glassy Carbon Electrode Interfaces for Alkali Metal–Oxygen Batteries. Journal of Physical Chemistry Letters, 2014, 5, 3924-3930.	2.1	18
70	Template-free synthesis of nitrogen doped carbon materials from an organic ionic dye (murexide) for supercapacitor application. RSC Advances, 2017, 7, 54626-54637.	1.7	16
71	Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O ₂ Batteries. Advanced Functional Materials, 2021, 31, 2010627.	7.8	16
72	Microwave plasma chemical vapor deposition of graphitic carbon thin films. Carbon, 2010, 48, 1552-1557.	5.4	14

#	Article	IF	CITATIONS
73	Analytical SERS: general discussion. Faraday Discussions, 2017, 205, 561-600.	1.6	14
74	Enhanced oxygen evolution performance of spinel Fe0.1Ni0.9Co2O4/Activated carbon composites. Electrochimica Acta, 2019, 326, 134986.	2.6	14
75	Crosslinked Polyimide and Reduced Graphene Oxide Composites as Long Cycle Life Positive Electrode for Lithiumâ€lon Cells. ChemSusChem, 2020, 13, 5571-5579.	3.6	14
76	Quantitative Resolution of Complex Stoichiometric Changes during Electrochemical Cycling by Density Functional Theory-Assisted Electrochemical Quartz Crystal Microbalance. ACS Applied Energy Materials, 2020, 3, 3347-3357.	2.5	14
77	Solventâ€Mediated Control of the Electrochemical Discharge Products of Nonâ€Aqueous Sodium–Oxygen Electrochemistry. Angewandte Chemie, 2016, 128, 8394-8397.	1.6	13
78	Na _{0.35} MnO ₂ as an ionic conductor with randomly distributed nano-sized layers. Journal of Materials Chemistry A, 2017, 5, 10021-10026.	5.2	13
79	Electrochemistry: general discussion. Faraday Discussions, 2018, 206, 405-426.	1.6	13
80	Adsorption, surface relaxation and electrolyte structure at Pt(111) electrodes in non-aqueous and aqueous acetonitrile electrolytes. Physical Chemistry Chemical Physics, 2019, 21, 8654-8662.	1.3	12
81	Carbon electrodes for energy storage: general discussion. Faraday Discussions, 2014, 172, 239-260.	1.6	11
82	Fabrication of a Lightâ€Weight Dualâ€Function Modified Separator towards Highâ€Performance Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 3648-3656.	1.7	11
83	Na2Fe2OS2, a new earth abundant oxysulphide cathode material for Na-ion batteries. Journal of Materials Chemistry A, 2020, 8, 20553-20569.	5.2	11
84	Sn 5s2 lone pairs and the electronic structure of tin sulphides: A photoreflectance, high-energy photoemission, and theoretical investigation. Physical Review Materials, 2020, 4, .	0.9	11
85	Growth and dissolution of NaO ₂ in an ether-based electrolyte as the discharge product in the Na–O ₂ cell. Chemical Communications, 2018, 54, 3444-3447.	2.2	8
86	Structure and dynamics of ionic liquids: general discussion. Faraday Discussions, 2018, 206, 291-337.	1.6	8
87	Application of In Situ Techniques for Investigations in Lithium-Ion Battery Materials. ECS Transactions, 2007, 3, 29-43.	0.3	7
88	Extended Condensed Ultraphosphate Frameworks with Monovalent Ions Combine Lithium Mobility with High Computed Electrochemical Stability. Journal of the American Chemical Society, 2021, 143, 18216-18232.	6.6	7
89	An electrochemical investigation of oxygen adsorption on Pt single crystal electrodes in a non-aqueous Li+ electrolyte. Electrochemistry Communications, 2020, 119, 106814.	2.3	6
90	Trapped interfacial redox introduces reversibility in the oxygen reduction reaction in a non-aqueous Ca ²⁺ electrolyte. Chemical Science, 2021, 12, 8909-8919.	3.7	5

#	Article	IF	CITATIONS
91	Porous polyimide separator promotes uniform lithium plating for lithiumâ€free cells. Electrochemical Science Advances, 2022, 2, e2100091.	1.2	5
92	Lithium Insertion into Graphitic Carbon Observed via Operando Kerr-Gated Raman Spectroscopy Enables High State of Charge Diagnostics. ACS Energy Letters, 2022, 7, 2611-2618.	8.8	5
93	The many faces of carbon in electrochemistry: general discussion. Faraday Discussions, 2014, 172, 117-137.	1.6	4
94	Approach to Wide-Frequency Battery Impedance Measurements in Commercial Applications. , 2019, , .		4
95	Batteries: Avoiding oxygen. Nature Energy, 2016, 1, .	19.8	2
96	Dynamics of Solidâ€Electrolyte Interphase Formation on Silicon Electrodes Revealed by Combinatorial Electrochemical Screening. Angewandte Chemie, 0, , .	1.6	2
97	Long-Life and pH-Stable SnO ₂ -Coated Au Nanoparticles for SHINERS. Journal of Physical Chemistry C, O, , .	1.5	2
98	Studying the Origin and Mechanism of Irreversible Capacity in Lithium-Ion Cells. ECS Transactions, 2008, 11, 139-148.	0.3	0
99	Ionic Liquids: Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O ₂ Batteries (Adv. Funct. Mater. 27/2021). Advanced Functional Materials, 2021, 31, 2170193.	7.8	Ο
100	(Invited) Oxygen Reactions at Poly and Single Crystalline Electrodes in a Sodium-Ion Containing Aprotic Solvent. ECS Meeting Abstracts, 2018, , .	0.0	0
101	Anionic Redox in Li-Rich Rocksalt Oxides Studied Via X-Ray Photoelectron Spectroscopy. ECS Meeting Abstracts, 2019, , .	0.0	0
102	Oxygen Reduction at Pt{Hkl} Electrodes in an Alkali Metal Ion Containing Aprotic Solvent. ECS Meeting Abstracts, 2019, , .	0.0	0
103	Exploring Ionic Liquid-Solvent Blend Formulations for the Stable Cycling of Li-Metal Anodes in Li-O2 Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
104	Kerr Gated Raman Spectroscopy to Investigate Lithium-Ion Battery Interfaces. ECS Meeting Abstracts, 2019, , .	0.0	0
105	Binder Degradation in Sodium- and Potassium-Oxygen Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
106	Achieving Stable Cycling of Li-Metal Anodes in Li-O2 Batteries: Optimizing Solvation Environment in Ionic Liquid/Solvent Blend Formulations. ECS Meeting Abstracts, 2020, MA2020-01, 441-441.	0.0	0
107	(Invited) Kerr Gated Raman Spectroscopy to Investigate Aging Processes on Lithium-Ion Electrode Interfaces. ECS Meeting Abstracts, 2020, MA2020-01, 190-190.	0.0	0
108	Observation of Interfacial Degradation of Solid Electrolytes Against Lithium Metal and Layered Transition Metal Oxides Via in Situ Electrochemical Raman Microscopy. ECS Meeting Abstracts, 2020, MA2020-02, 889-889.	0.0	0

#	Article	IF	CITATIONS
109	Ordered Oxygen Vacancies in the Lithium-Rich Oxide Li ₄ CuSbO _{5.5} , a Triclinic Structure Type Derived from the Cubic Rocksalt Structure. Inorganic Chemistry, 2021, 60, 19022-19034.	1.9	0
110	(Invited) Design of Electrospun Polyimide-Based Separators for Electrical Double-Layer Capacitors and Lithium-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 604-604.	0.0	0
111	Multi-Functional Polyimide Separators for Electrochemical Capacitor and Lithium-Ion Cell Applications. ECS Meeting Abstracts, 2022, MA2022-01, 550-550.	0.0	0
112	Operando electrochemical Kerr Gated Raman Spectroscopy to Probe the High States of Charge in Graphite Electrodes for Li-Ion Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 2475-2475.	0.0	0
113	Operando Surface Enhanced Infrared Spectroscopic Investigations of Interfacial Restructuring and Oxygen Electrochemistry in Ionic Liquid Electrolytes for Metal-Air Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 569-569.	0.0	0
114	Stable Formulations for the Lithium and Sodium Metal Interfaces in Alkali Metal-Oxygen Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 496-496.	0.0	0
115	Gas Evolution from Sulfide-Based All-Solid-State Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 231-231.	0.0	Ο