Rainer Lohmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1819043/publications.pdf Version: 2024-02-01

		25034	30087
152	11,612	57	103
papers	citations	h-index	g-index
153	153	153	8579
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A sensitive method for the detection of legacy and emerging per- and polyfluorinated alkyl substances (PFAS) in dairy milk. Analytical and Bioanalytical Chemistry, 2022, 414, 1235-1243.	3.7	9
2	Urban proximity while breeding is not a predictor of perfluoroalkyl substance contamination in the eggs of brown pelicans. Science of the Total Environment, 2022, 803, 150110.	8.0	6
3	Information Requirements under the Essential-Use Concept: PFAS Case Studies. Environmental Science & Technology, 2022, 56, 6232-6242.	10.0	32
4	Poly―and Perfluorinated Alkyl Substances in Air and Water from Dhaka, Bangladesh. Environmental Toxicology and Chemistry, 2022, 41, 334-342.	4.3	10
5	Birds of a Feather Eat Plastic Together: High Levels of Plastic Ingestion in Great Shearwater Adults and Juveniles Across Their Annual Migratory Cycle. Frontiers in Marine Science, 2022, 8, .	2.5	7
6	Seasonal variation and deposition of atmospheric organophosphate esters in the coastal region of Shanghai, China. Environmental Pollution, 2022, 300, 118930.	7.5	9
7	Legacy halogenated organic contaminants in urban-influenced waters using passive polyethylene samplers: Emerging evidence of anthropogenic land-use-based sources and ecological risks. Environmental Pollution, 2022, 298, 118854.	7.5	4
8	Transport and fate of aqueous film forming foam in an urban estuary. Environmental Pollution, 2022, 300, 118963.	7.5	9
9	Organophosphate ester pollution in the oceans. Nature Reviews Earth & Environment, 2022, 3, 309-322.	29.7	55
10	Freely dissolved organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) along the Indus River Pakistan: spatial pattern and risk assessment. Environmental Science and Pollution Research, 2022, 29, 65670-65683.	5.3	5
11	Emerging Contaminants: Fluorinated Alternatives to Existing PFAS. Environmental Science & Technology, 2022, 56, 6001-6003.	10.0	15
12	PAHs in the North Atlantic Ocean and the Arctic Ocean: Spatial Distribution and Water Mass Transport. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	5
13	Field Validation of a Novel Passive Sampler for Dissolved PFAS in Surface Waters. Environmental Toxicology and Chemistry, 2022, 41, 2375-2385.	4.3	14
14	Trends of Diverse POPs in Air and Water Across the Western Atlantic Ocean: Strong Gradients in the Ocean but Not in the Air. Environmental Science & Technology, 2021, 55, 9498-9507.	10.0	18
15	We need a global science-policy body on chemicals and waste. Science, 2021, 371, 774-776.	12.6	59
16	Lake Superior Has Lost over 90% of Its Pesticide HCH Load since 1986. Environmental Science & Technology, 2021, 55, 9518-9526.	10.0	8
17	Tissue-Specific Distribution of Legacy and Novel Per- and Polyfluoroalkyl Substances in Juvenile Seabirds. Environmental Science and Technology Letters, 2021, 8, 457-462.	8.7	34
18	Net volatilization of PAHs from the North Pacific to the Arctic Ocean observed by passive sampling. Environmental Pollution, 2021, 276, 116728.	7.5	17

#	Article	IF	CITATIONS
19	In-situ and ex-situ measurement of hydrophobic organic contaminants in soil air based on passive sampling: PAH exchange kinetics, non-equilibrium correction and comparison with traditional estimations. Journal of Hazardous Materials, 2021, 410, 124646.	12.4	4
20	The Air That We Breathe: Neutral and Volatile PFAS in Indoor Air. Environmental Science and Technology Letters, 2021, 8, 897-902.	8.7	63
21	Emerging questions in exposure, regulation, and remediation of PFAS. IScience, 2021, 24, 103054.	4.1	0
22	Addressing Urgent Questions for PFAS in the 21st Century. Environmental Science & Technology, 2021, 55, 12755-12765.	10.0	17
23	Spatial distribution and airâ~'water exchange of organophosphate esters in the lower Great Lakes. Environmental Pollution, 2021, 286, 117349.	7.5	12
24	A graphene-based hydrogel monolith with tailored surface chemistry for PFAS passive sampling. Environmental Science: Nano, 2021, 8, 2894-2907.	4.3	16
25	Finding essentiality feasible: common questions and misinterpretations concerning the "essential-use― concept. Environmental Sciences: Processes and Impacts, 2021, 23, 1079-1087.	3.5	16
26	Bioaccumulation of PCBs, OCPs and PBDEs in Marine Mammals From West Antarctica. Frontiers in Marine Science, 2021, 8, .	2.5	8
27	In Situ Passive Sampling Techniques for Monitoring Environmental Mixture Exposure. , 2020, , 13-21.		1
28	Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS?. Environmental Science & amp; Technology, 2020, 54, 12820-12828.	10.0	149
29	The high persistence of PFAS is sufficient for their management as a chemical class. Environmental Sciences: Processes and Impacts, 2020, 22, 2307-2312.	3.5	125
30	An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Sciences: Processes and Impacts, 2020, 22, 2345-2373.	3.5	632
31	Legacy and Novel Per- and Polyfluoroalkyl Substances in Juvenile Seabirds from the U.S. Atlantic Coast. Environmental Science & Technology, 2020, 54, 12938-12948.	10.0	40
32	Ex situ determination of freely dissolved concentrations of hydrophobic organic chemicals in sediments and soils: basis for interpreting toxicity and assessing bioavailability, risks and remediation necessity. Nature Protocols, 2020, 15, 1800-1828.	12.0	27
33	Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environmental Sciences: Processes and Impacts, 2020, 22, 1444-1460.	3.5	126
34	Air-water exchange and distribution pattern of organochlorine pesticides in the atmosphere and surface water of the open Pacific ocean. Environmental Pollution, 2020, 265, 114956.	7.5	23
35	Assessing Benthic Bioaccumulation of Polychlorinated Dioxins/Furans and Polychlorinated Biphenyls in the Lower Passaic River (NJ, USA) Based on In Situ Passive Sampling. Environmental Toxicology and Chemistry, 2020, 39, 1174-1185.	4.3	9
36	Air-soil diffusive exchange of PAHs in an urban park of Shanghai based on polyethylene passive sampling: Vertical distribution, vegetation influence and diffusive flux. Science of the Total Environment, 2019, 689, 734-742.	8.0	14

#	Article	IF	CITATIONS
37	Passive Sampling of Persistent Organic Pollutants in Four Coastal Aquatic Systems of Puerto Rico: A Pilot Study. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 770-775.	2.7	5
38	Poly- and Perfluoroalkyl Substances in Seawater and Plankton from the Northwestern Atlantic Margin. Environmental Science & Technology, 2019, 53, 12348-12356.	10.0	85
39	Aryl hydrocarbon receptorâ€mediated activity of gasâ€phase ambient air derived from passive sampling and an in vitro bioassay. Environmental Toxicology and Chemistry, 2019, 38, 748-759.	4.3	1
40	The concept of essential use for determining when uses of PFASs can be phased out. Environmental Sciences: Processes and Impacts, 2019, 21, 1803-1815.	3.5	125
41	A Global 3â€D Ocean Model for PCBs: Benchmark Compounds for Understanding the Impacts of Global Change on Neutral Persistent Organic Pollutants. Global Biogeochemical Cycles, 2019, 33, 469-481.	4.9	31
42	Organophosphate flame retardants in the indoor and outdoor dust and gas-phase of Alexandria, Egypt. Chemosphere, 2019, 220, 275-285.	8.2	45
43	Uptake of hydrophobic organic compounds, including organochlorine pesticides, polybrominated diphenyl ethers, and perfluoroalkyl acids in fish and blue crabs of the lower Passaic River, New Jersey, USA. Environmental Toxicology and Chemistry, 2019, 38, 872-882.	4.3	18
44	Passive sampler-derived concentrations of PAHs in air and water along Brazilian mountain transects. Atmospheric Pollution Research, 2019, 10, 635-641.	3.8	13
45	Polychlorinated Biphenyls in the Global Ocean. , 2019, , 269-282.		4
46	Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison. Environmental Science & Technology, 2018, 52, 3574-3582.	10.0	38
47	Selected organohalogenated flame retardants in Egyptian indoor and outdoor environments: Levels, sources and implications for human exposure. Science of the Total Environment, 2018, 633, 1536-1548.	8.0	23
48	Land-use-based sources and trends of dissolved PBDEs and PAHs in an urbanized watershed using passive polyethylene samplers. Environmental Pollution, 2018, 238, 573-580.	7.5	10
49	Fieldâ€ŧesting polyethylene passive samplers for the detection of neutral polyfluorinated alkyl substances in air and water. Environmental Toxicology and Chemistry, 2018, 37, 3002-3010.	4.3	19
50	Concentrations, Trends, and Air–Water Exchange of PCBs and Organochlorine Pesticides Derived from Passive Samplers in Lake Superior in 2011. Environmental Science & Technology, 2018, 52, 14061-14069.	10.0	25
51	Concentrations and Water Mass Transport of Legacy POPs in the Arctic Ocean. Geophysical Research Letters, 2018, 45, 12,972.	4.0	28
52	Dissolved Organophosphate Esters and Polybrominated Diphenyl Ethers in Remote Marine Environments: Arctic Surface Water Distributions and Net Transport through Fram Strait. Environmental Science & Technology, 2018, 52, 6208-6216.	10.0	83
53	Time Trends of Polybrominated Diphenyl Ethers (PBDEs) in Antarctic Biota. ACS Omega, 2018, 3, 6595-6604.	3.5	21
54	Organophosphate Ester Flame Retardants and Plasticizers in Ocean Sediments from the North Pacific to the Arctic Ocean. Environmental Science & Technology, 2017, 51, 3809-3815.	10.0	142

#	Article	IF	CITATIONS
55	Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans—but should microplastics be considered POPs themselves?. Integrated Environmental Assessment and Management, 2017, 13, 460-465.	2.9	159
56	Vertical Profiles, Sources, and Transport of PFASs in the Arctic Ocean. Environmental Science & Technology, 2017, 51, 6735-6744.	10.0	107
57	Aquatic Global Passive Sampling (AQUA-GAPS) Revisited: First Steps toward a Network of Networks for Monitoring Organic Contaminants in the Aquatic Environment. Environmental Science & Technology, 2017, 51, 1060-1067.	10.0	61
58	North Atlantic Deep Water formation inhibits high Arctic contamination by continental perfluorooctane sulfonate discharges. Global Biogeochemical Cycles, 2017, 31, 1332-1343.	4.9	42
59	Using Polyethylene Passive Samplers To Study the Partitioning and Fluxes of Polybrominated Diphenyl Ethers in an Urban River. Environmental Science & Technology, 2017, 51, 9062-9071.	10.0	27
60	The Florence Statement on Triclosan and Triclocarban. Environmental Health Perspectives, 2017, 125, 064501.	6.0	144
61	Changing sources of polychlorinated dibenzoâ€ <i>p</i> â€dioxins and furans in sediments and ecological risk for nekton in the lower Passaic River and Newark Bay, New Jersey, USA. Environmental Toxicology and Chemistry, 2016, 35, 550-562.	4.3	15
62	Depth Profiles of Persistent Organic Pollutants in the North and Tropical Atlantic Ocean. Environmental Science & Technology, 2016, 50, 6172-6179.	10.0	49
63	Levels, sources and chemical fate of persistent organic pollutants in the atmosphere and snow along the western Antarctic Peninsula. Environmental Pollution, 2016, 216, 304-313.	7.5	80
64	Source Attribution of Poly- and Perfluoroalkyl Substances (PFASs) in Surface Waters from Rhode Island and the New York Metropolitan Area. Environmental Science and Technology Letters, 2016, 3, 316-321.	8.7	111
65	Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environmental Science and Technology Letters, 2016, 3, 344-350.	8.7	839
66	Spatial Distribution and Air–Water Exchange of Organic Flame Retardants in the Lower Great Lakes. Environmental Science & Technology, 2016, 50, 9133-9141.	10.0	34
67	Estimation of Uncertainty in Air–Water Exchange Flux and Gross Volatilization Loss of PCBs: A Case Study Based on Passive Sampling in the Lower Great Lakes. Environmental Science & Technology, 2016, 50, 10894-10902.	10.0	20
68	Polycyclic Musks in the Air and Water of the Lower Great Lakes: Spatial Distribution and Volatilization from Surface Waters. Environmental Science & Technology, 2016, 50, 11575-11583.	10.0	31
69	Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: a 5-year air monitoring study. Atmospheric Chemistry and Physics, 2016, 16, 6901-6911.	4.9	50
70	Gaseous and Freely-Dissolved PCBs in the Lower Great Lakes Based on Passive Sampling: Spatial Trends and Air–Water Exchange. Environmental Science & Technology, 2016, 50, 4932-4939.	10.0	57
71	Use of passive samplers to detect organochlorine pesticides in air and water at wetland mountain region sites (S-SE Brazil). Chemosphere, 2016, 144, 2175-2182.	8.2	53
72	Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites. Environmental Toxicology and Chemistry, 2015, 34, 1720-1733.	4.3	31

#	Article	IF	CITATIONS
73	Source apportionment of gaseous and particulate PAHs from traffic emission using tunnel measurements in Shanghai, China. Atmospheric Environment, 2015, 107, 129-136.	4.1	74
74	Exploring the planetary boundary for chemical pollution. Environment International, 2015, 78, 8-15.	10.0	125
75	Celebrating Bidleman's 1988 "Atmospheric Processes― Environmental Science & Technology, 2015, 49, 1235-1236.	10.0	2
76	Simulation of Observed PCBs and Pesticides in the Water Column during the North Atlantic Bloom Experiment. Environmental Science & amp; Technology, 2015, 49, 13760-13767.	10.0	9
77	Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle partitioning. Chemosphere, 2015, 134, 52-59.	8.2	115
78	Spatial Distribution, Air–Water Fugacity Ratios and Source Apportionment of Polychlorinated Biphenyls in the Lower Great Lakes Basin. Environmental Science & Technology, 2015, 49, 13787-13797.	10.0	48
79	Concentrations, Trends, and Air–Water Exchange of PAHs and PBDEs Derived from Passive Samplers in Lake Superior in 2011. Environmental Science & Technology, 2015, 49, 13777-13786.	10.0	56
80	Diurnal Variability of Persistent Organic Pollutants in the Atmosphere over the Remote Southern Atlantic Ocean. Atmosphere, 2014, 5, 622-634.	2.3	1
81	Comparing sediment equilibrium partitioning and passive sampling techniques to estimate benthic biota PCDD/F concentrations in Newark Bay, New Jersey (U.S.A.). Environmental Pollution, 2014, 186, 172-179.	7.5	19
82	Trophodynamic Behavior of Hydrophobic Organic Contaminants in the Aquatic Food Web of a Tidal River. Environmental Science & Technology, 2014, 48, 12533-12542.	10.0	57
83	Significance of Population Centers As Sources of Gaseous and Dissolved PAHs in the Lower Great Lakes. Environmental Science & Technology, 2014, 48, 7789-7797.	10.0	68
84	Organic pollutants and ocean fronts across the Atlantic Ocean: A review. Progress in Oceanography, 2014, 128, 172-184.	3.2	50
85	Field calibration of low density polyethylene passive samplers for gaseous POPs. Environmental Sciences: Processes and Impacts, 2014, 16, 414-421.	3.5	32
86	Spatial Trends, Sources, and Air–Water Exchange of Organochlorine Pesticides in the Great Lakes Basin Using Low Density Polyethylene Passive Samplers. Environmental Science & Technology, 2014, 48, 9315-9324.	10.0	45
87	Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies. Atmospheric Chemistry and Physics, 2014, 14, 7431-7443.	4.9	26
88	Feasibility of using low density polyethylene sheets to detect atmospheric organochlorine pesticides in Alexandria, Egypt. Environmental Pollution, 2013, 181, 151-158.	7.5	21
89	PAHs on a West-to-East Transect Across the Tropical Atlantic Ocean. Environmental Science & Technology, 2013, 47, 2570-2578.	10.0	63
90	Water as a new matrix for global assessment of hydrophilic POPs. TrAC - Trends in Analytical Chemistry, 2013, 46, 162-172.	11.4	39

#	Article	IF	CITATIONS
91	Vertical eddy diffusion as a key mechanism for removing perfluorooctanoic acid (PFOA) from the global surface oceans. Environmental Pollution, 2013, 179, 88-94.	7.5	21
92	Challenges of Using Polyethylene Passive Samplers to Determine Dissolved Concentrations of Parent and Alkylated PAHs under Cold and Saline Conditions. Environmental Science & Technology, 2013, 47, 130909083630001.	10.0	13
93	Concentrations, Fluxes, and Residence Time of PBDEs Across the Tropical Atlantic Ocean. Environmental Science & Technology, 2013, 47, 13967-13975.	10.0	52
94	Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Chemosphere, 2013, 91, 895-903.	8.2	135
95	Science Should Guide TSCA Reform. Environmental Science & Technology, 2013, 47, 8995-8996.	10.0	7
96	Atmospheric Transport, Cycling and Dynamics of Polychlorinated Biphenyls (PCBs) from Source Regions to Remote Oceanic Areas. ACS Symposium Series, 2013, , 3-18.	0.5	10
97	PCBs and OCPs on a East-to-West Transect: The Importance of Major Currents and Net Volatilization for PCBs in the Atlantic Ocean. Environmental Science & Technology, 2012, 46, 10471-10479.	10.0	61
98	Field Validation of Polyethylene Passive Air Samplers for Parent and Alkylated PAHs in Alexandria, Egypt. Environmental Science & Technology, 2012, 46, 3990-3998.	10.0	62
99	Fate of Chiral and Achiral Organochlorine Pesticides in the North Atlantic Bloom Experiment. Environmental Science & Technology, 2012, 46, 8106-8114.	10.0	38
100	Manufacturing Origin of Perfluorooctanoate (PFOA) in Atlantic and Canadian Arctic Seawater. Environmental Science & Technology, 2012, 46, 677-685.	10.0	62
101	Critical Review of Low-Density Polyethylene's Partitioning and Diffusion Coefficients for Trace Organic Contaminants and Implications for Its Use As a Passive Sampler. Environmental Science & Technology, 2012, 46, 606-618.	10.0	262
102	Perfluoroalkyl Acids in the Atlantic and Canadian Arctic Oceans. Environmental Science & Technology, 2012, 46, 5815-5823.	10.0	136
103	Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water. Environmental Science and Pollution Research, 2012, 19, 1885-1895.	5.3	102
104	Freely dissolved PBDEs in water and porewater of an urban estuary. Environmental Pollution, 2012, 162, 287-293.	7.5	40
105	Passive sampling provides evidence for Newark Bay as a source of polychlorinated dibenzoâ€ <i>p</i> â€dioxins and furans to the New York/New Jersey, USA, atmosphere. Environmental Toxicology and Chemistry, 2012, 31, 253-261.	4.3	24
106	Determining Airâ^'Water Exchange, Spatial and Temporal Trends of Freely Dissolved PAHs in an Urban Estuary Using Passive Polyethylene Samplers. Environmental Science & Technology, 2011, 45, 2655-2662.	10.0	63
107	A Thermodynamic Approach for Assessing the Environmental Exposure of Chemicals Absorbed to Microplastic. Environmental Science & amp; Technology, 2011, 45, 1466-1472.	10.0	366
108	Role of Black Carbon in the Sorption of Polychlorinated Dibenzo- <i>p</i> -dioxins and Dibenzofurans at the Diamond Alkali Superfund Site, Newark Bay, New Jersey. Environmental Science & Technology, 2011, 45, 4331-4338.	10.0	27

#	Article	IF	CITATIONS
109	Development and Use of Polyethylene Passive Samplers To Detect Triclosans and Alkylphenols in an Urban Estuary. Environmental Science & Technology, 2011, 45, 2270-2277.	10.0	54
110	Resuspension of polychlorinated biphenyl ontaminated field sediment: release to the water column and determination of siteâ€specific <i>K</i> _{DOC} . Environmental Toxicology and Chemistry, 2011, 30, 377-384.	4.3	16
111	Dietary Uptake from Historically Contaminated Sediments as a Source of PCBs to Migratory Fish and Invertebrates in an Urban Estuary. Environmental Science & Technology, 2010, 44, 5444-5449.	10.0	30
112	Atlantic Ocean Surface Waters Buffer Declining Atmospheric Concentrations of Persistent Organic Pollutants. Environmental Science & amp; Technology, 2010, 44, 6978-6984.	10.0	63
113	Fieldâ€derived Henry's law constants for polychlorinated biphenyls in oceanic waters. Journal of Geophysical Research, 2010, 115, .	3.3	7
114	Cycling of PCBs and HCB in the Surface Ocean-Lower Atmosphere of the Open Pacific. Environmental Science & Technology, 2010, 44, 3832-3838.	10.0	65
115	Global Aquatic Passive Sampling (AQUA-GAPS): Using Passive Samplers to Monitor POPs in the Waters of the World. Environmental Science & Technology, 2010, 44, 860-864.	10.0	100
116	Organochlorine Pesticides and PAHs in the Surface Water and Atmosphere of the North Atlantic and Arctic Ocean. Environmental Science & amp; Technology, 2009, 43, 5633-5639.	10.0	192
117	Comparing Polychaete and Polyethylene Uptake to Assess Sediment Resuspension Effects on PCB Bioavailability. Environmental Science & Technology, 2009, 43, 2865-2870.	10.0	66
118	Fluxes of soot black carbon to South Atlantic sediments. Global Biogeochemical Cycles, 2009, 23, .	4.9	62
119	PAHs in Air and Seawater along a North–South Atlantic Transect: Trends, Processes and Possible Sources. Environmental Science & Technology, 2008, 42, 1580-1585.	10.0	156
120	Polychlorinated biphenyls in air and water of the North Atlantic and Arctic Ocean. Journal of Geophysical Research, 2008, 113, .	3.3	85
121	Detecting Airâ^'Water and Surfaceâ^'Deep Water Gradients of PCBs Using Polyethylene Passive Samplers. Environmental Science & Technology, 2008, 42, 7248-7253.	10.0	50
122	Polychlorinated Biphenyls (PCBs) in Air and Seawater of the Atlantic Ocean: Sources, Trends and Processes. Environmental Science & Technology, 2008, 42, 1416-1422.	10.0	119
123	Global fate of POPs: Current and future research directions. Environmental Pollution, 2007, 150, 150-165.	7.5	480
124	Polyethylene Devices:Â Passive Samplers for Measuring Dissolved Hydrophobic Organic Compounds in Aquatic Environments. Environmental Science & Technology, 2007, 41, 1317-1323.	10.0	246
125	Occurrence and Airâ^'Sea Exchange of Phthalates in the Arctic. Environmental Science & Technology, 2007, 41, 4555-4560.	10.0	176
126	Levels of persistent organic pollutants in air in China and over the Yellow Sea. Atmospheric Environment, 2007, 41, 452-464.	4.1	89

#	Article	IF	CITATIONS
127	Assessing the importance of ab- and adsorption to the gas-particle partitioning of PCDD/Fs. Atmospheric Environment, 2007, 41, 7767-7777.	4.1	17
128	Verifying emission factors and national POPs emission inventories for the UK using measurements and modelling at two rural locations. Journal of Environmental Monitoring, 2006, 8, 79-88.	2.1	10
129	Quantifying the importance of the atmospheric sink for polychlorinated dioxins and furans relative to other global loss processes. Journal of Geophysical Research, 2006, 111, .	3.3	13
130	Oceanic deep water formation as a sink of persistent organic pollutants. Geophysical Research Letters, 2006, 33, .	4.0	71
131	Importance of Black Carbon to Sorption of Native PAHs, PCBs, and PCDDs in Boston and New York Harbor Sediments. Environmental Science & Technology, 2005, 39, 141-148.	10.0	321
132	Wet Deposition of Persistent Organic Pollutants to the Global Oceans. Environmental Science & Technology, 2005, 39, 2426-2435.	10.0	125
133	Emission Factors and Importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from the Domestic Burning of Coal and Wood in the U.K Environmental Science & amp; Technology, 2005, 39, 1436-1447.	10.0	249
134	ROLE OF BLACK CARBON IN THE PARTITIONING AND BIOAVAILABILITY OF ORGANIC POLLUTANTS—Letter to the Editor. Environmental Toxicology and Chemistry, 2004, 23, 2531.	4.3	19
135	DEPENDENCY OF POLYCHLORINATED BIPHENYL AND POLYCYCLIC AROMATIC HYDROCARBON BIOACCUMULATION IN MYA ARENARIA ON BOTH WATER COLUMN AND SEDIMENT BED CHEMICAL ACTIVITIES. Environmental Toxicology and Chemistry, 2004, 23, 2551.	4.3	59
136	Adsorptive and Absorptive Contributions to the Gas-Particle Partitioning of Polycyclic Aromatic Hydrocarbons:Â State of Knowledge and Recommended Parametrization for Modeling. Environmental Science & Technology, 2004, 38, 3793-3803.	10.0	297
137	Evidence for Dynamic Airâ^'Water Coupling and Cycling of Persistent Organic Pollutants over the Open Atlantic Ocean. Environmental Science & Technology, 2004, 38, 2617-2625.	10.0	113
138	Potential Contamination of Shipboard Air Samples by Diffusive Emissions of PCBs and Other Organic Pollutants:Â Implications and Solutions. Environmental Science & Technology, 2004, 38, 3965-3970.	10.0	49
139	Atmospheric Dry Deposition of Persistent Organic Pollutants to the Atlantic and Inferences for the Global Oceans. Environmental Science & amp; Technology, 2004, 38, 5505-5513.	10.0	144
140	Latitudinal and seasonal capacity of the surface oceans as a reservoir of polychlorinated biphenyls. Environmental Pollution, 2004, 128, 149-162.	7.5	59
141	Partikelgebundene organische Stoffe in der AtmosphÃ r e. Nachrichten Aus Der Chemie, 2004, 52, 560-564.	0.0	0
142	Processes controlling diurnal variations of PCDD/Fs in the New Jersey coastal atmosphere. Atmospheric Environment, 2003, 37, 959-969.	4.1	27
143	Oceanic Biogeochemical Controls on Global Dynamics of Persistent Organic Pollutants. Environmental Science & Technology, 2002, 36, 4229-4237.	10.0	345
144	Further Developments in the Use of Semipermeable Membrane Devices (SPMDs) as Passive Air Samplers for Persistent Organic Pollutants:Â Field Application in a Spatial Survey of PCDD/Fs and PAHs. Environmental Science & Technology, 2001, 35, 2576-2582.	10.0	94

#	Article	IF	CITATIONS
145	Gas-particle partitioning of PCDD/Fs in daily air samples. Atmospheric Environment, 2000, 34, 2529-2537.	4.1	68
146	A Comparative Study of the Gas-Particle Partitioning of PCDD/Fs, PCBs, and PAHs. Environmental Science & Technology, 2000, 34, 4943-4951.	10.0	177
147	Evidence for Dynamic Airâ^'Water Exchange of PCDD/Fs:Â A Study in the Raritan Bay/Hudson River Estuary. Environmental Science & Technology, 2000, 34, 3086-3093.	10.0	49
148	Assessing the Contribution of Diffuse Domestic Burning as a Source of PCDD/Fs, PCBs, and PAHs to the U.K. Atmosphere. Environmental Science & Technology, 2000, 34, 2892-2899.	10.0	150
149	Detailed Studies of the Factors Controlling Atmospheric PCDD/F Concentrations. Environmental Science & amp; Technology, 1999, 33, 4440-4447.	10.0	61
150	Atmospheric Transport of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDD/Fs) in Air Masses Across the United Kingdom and Ireland:Â Evidence of Emissions and Depletion. Environmental Science & Technology, 1999, 33, 2872-2878.	10.0	44
151	Seasonal, Anthropogenic, Air Mass, and Meteorological Influences on the Atmospheric Concentrations of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDD/Fs):Â Evidence for the Importance of Diffuse Combustion Sources. Environmental Science & Technology, 1999, 33, 2864-2871.	10.0	76
152	Dioxins and furans in air and deposition: A review of levels, behaviour and processes. Science of the Total Environment, 1998, 219, 53-81.	8.0	360