
Kouta Tateno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1819011/publications.pdf Version: 2024-02-01

Κομτά Τάτενιο

#	Article	IF	CITATIONS
1	Electrical tuning of the spin–orbit interaction in nanowire by transparent ZnO gate grown by atomic layer deposition. Applied Physics Letters, 2021, 119, .	3.3	4
2	InP/InAs Quantum Heterostructure Nanowires Toward Telecom-Band Nanowire Lasers. , 2021, , 433-454.		1
3	Novel Fabrication Technique of Suspended Nanowire Devices for Nanomechanical Applications. Physica Status Solidi (B): Basic Research, 2020, 257, 1900401.	1.5	3
4	Hybrid Nanowire Photodetector Integrated in a Silicon Photonic Crystal. ACS Photonics, 2020, 7, 3467-3473.	6.6	15
5	All-Optical InAsP/InP Nanowire Switches Integrated in a Si Photonic Crystal. ACS Photonics, 2020, 7, 1016-1021.	6.6	42
6	Nanowire-based telecom-band light-emitting diodes with efficient light extraction. Japanese Journal of Applied Physics, 2020, 59, 105003.	1.5	5
7	Study on the formation mechanism of bismuth-mediated Ge nanodots fabricated by vacuum evaporation. Japanese Journal of Applied Physics, 2019, 58, SDDG10.	1.5	2
8	Low-temperature formation of GeSn nanodots by Sn mediation. Japanese Journal of Applied Physics, 2019, 58, SDDG09.	1.5	6
9	Efficient gate control of spin–orbit interaction in InSb nanowire FET with a nearby back gate. Applied Physics Express, 2019, 12, 117002.	2.4	11
10	Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature. Science Advances, 2019, 5, eaat8896.	10.3	68
11	Wurtzite GaP nanowire grown by using tertiarybutylchloride and used to fabricate solar cell. Japanese Journal of Applied Physics, 2019, 58, 015004.	1.5	1
12	Diameter-tailored telecom-band luminescence in InP/InAs heterostructure nanowires grown on InP (111)B substrate with continuously-modulated diameter from microscale to nanoscale. Nanotechnology, 2018, 29, 155202.	2.6	9
13	Alternating InAsP/InP heterostructure nanowires grown with tertiary-butyl chloride. Nano Futures, 2018, 2, 045006.	2.2	8
14	Direct modulation of a single InP/InAs nanowire light-emitting diode. Applied Physics Letters, 2018, 112,	3.3	21
15	Subwavelength Nanowire Lasers on a Silicon Photonic Crystal Operating at Telecom Wavelengths. ACS Photonics, 2017, 4, 355-362.	6.6	35
16	Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal. APL Photonics, 2017, 2, .	5.7	60
17	InP/InAs Quantum Heterostructure Nanowires. , 2017, , 397-436.		0
18	Site-defined InP/InAs heterostructure nanowires with tunable diameter by in-situ diameter-tuning technique. , 2016, , .		0

#	Article	IF	CITATIONS
19	Self-aligned gate-all-around InAs/InP core–shell nanowire field-effect transistors. Japanese Journal of Applied Physics, 2015, 54, 04DN04.	1.5	5
20	Dynamical observation of photo-Dember effect on semi-insulating GaAs using femtosecond core-level photoelectron spectroscopy. Applied Physics Express, 2015, 8, 022401.	2.4	6
21	Controlled 1.1–1.6 <i>î¼</i> m luminescence in gold-free multi-stacked InAs/InP heterostructure nanowires. Nanotechnology, 2015, 26, 115704.	2.6	16
22	Bridging the Gap between the Nanometer-Scale Bottom-Up and Micrometer-Scale Top-Down Approaches for Site-Defined InP/InAs Nanowires. ACS Nano, 2015, 9, 10580-10589.	14.6	17
23	Deep-level transient spectroscopy characterization of In(Ga)As quantum dots fabricated using Bi as a surfactant. Japanese Journal of Applied Physics, 2014, 53, 06JG11.	1.5	0
24	Growth of InP nanowires on graphene-covered Fe. Japanese Journal of Applied Physics, 2014, 53, 015504.	1.5	3
25	Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. Nature Materials, 2014, 13, 279-285.	27.5	94
26	TBCl etching for uniform-diameter InAsP nanowires. , 2014, , .		0
27	Etching effect of tertiary-butyl chloride during InP-nanowire growth. Journal of Crystal Growth, 2014, 402, 299-303.	1.5	4
28	Semiconductor Nanowire Induced Photonic-Crystal Nanocavity with Selectable Resonant Wavelength. , 2014, , .		0
29	Encapsulated gate-all-around InAs nanowire field-effect transistors. Applied Physics Letters, 2013, 103, .	3.3	18
30	Au-free InAs nanowires grown in In-particle-assisted vapor-liquid-solid mode: growth, structure, and electrical property. AIP Advances, 2013, 3, .	1.3	23
31	Topological Raman Band in the Carbon Nanohorn. Physical Review Letters, 2013, 111, 116801.	7.8	9
32	Time-Resolved Surface Photoelectron Spectroscopy of Photoexcited Electron and Hole Dynamics on GaAs Using 92 eV Laser Harmonic Source. Japanese Journal of Applied Physics, 2012, 51, 072401.	1.5	6
33	Vertically Aligned InP Nanowires Grown via the Self-Assisted Vapor–Liquid–Solid Mode. Applied Physics Express, 2012, 5, 055201.	2.4	18
34	VLS Growth of Alternating InAsP/InP Heterostructure Nanowires for Multiple-Quantum-Dot Structures. Nano Letters, 2012, 12, 2888-2893.	9.1	52
35	Flat-Top and Stacking-Fault-Free GaAs-Related Nanopillars Grown on Si Substrates. Journal of Nanotechnology, 2012, 2012, 1-8.	3.4	3
36	Time-Resolved Surface Photoelectron Spectroscopy of Photoexcited Electron and Hole Dynamics on GaAs Using 92 eV Laser Harmonic Source. Japanese Journal of Applied Physics, 2012, 51, 072401.	1.5	4

#	Article	IF	CITATIONS
37	Predominant Si Doping through Au Catalyst Particles in the Vaporâ^'Liquidâ^'Solid Mode over the Shell Layer via the Vapor-Phase Epitaxy Mode of InAs Nanowires. Journal of Physical Chemistry C, 2011, 115, 2923-2930.	3.1	9
38	Distinctive Feature of Ripening During Growth Interruption of InGaAs Quantum Dot Epitaxy Using Bi as a Surfactant. Japanese Journal of Applied Physics, 2011, 50, 06GH07.	1.5	1
39	Supercurrent through InAs nanowires with highly transparent superconducting contacts. Nanotechnology, 2011, 22, 445701.	2.6	25
40	Doping-type dependence of phonon dephasing dynamics in Si. Applied Physics Letters, 2011, 98, 141904.	3.3	3
41	Real-Time Observation of Ultrafast Carrier and Phonon Dynamics in p-Type Silicon. The Review of Laser Engineering, 2010, 38, 130-135.	0.0	0
42	<110>-Oriented In0.04Ga0.96As Nanowires Laterally Grown on GaAs (311)B Substrate in Au-Catalyzed Vapor–Liquid–Solid Mode. Applied Physics Express, 2010, 3, 105002.	2.4	3
43	Structural, Compositional, and Optical Characterizations of Vertically Aligned AlAs/GaAs/GaP Heterostructure Nanowires Epitaxially Grown on Si Substrate. Japanese Journal of Applied Physics, 2010, 49, 015001.	1.5	24
44	Parallel-aligned GaAs nanowires with âŸ [~] 110⟩ orientation laterally grown on [311]B substrates via the gold-catalyzed vapor–liquid–solid mode. Nanotechnology, 2010, 21, 095607.	2.6	16
45	Synthesis of GaAs nanowires with very small diameters and their optical properties with the radial quantum-confinement effect. Applied Physics Letters, 2009, 95, 123104.	3.3	39
46	Anisotropy in Ultrafast Carrier and Phonon Dynamics in p-Type Heavily Doped Si. Japanese Journal of Applied Physics, 2009, 48, 100205.	1.5	16
47	Photoluminescence study of bare freestanding gallium arsenide nanowires grown by vapor-liquid-solid method. , 2009, , .		0
48	Heterostructures in GaP-based free-standing nanowires on Si substrates. , 2009, , .		0
49	Characterization of Individual GaAs/AlGaAs Self-Standing Nanowires by Cathodoluminescence Technique using Transmission Electron Microscope. Japanese Journal of Applied Physics, 2008, 47, 6596-6600.	1.5	6
50	Growth of GalnAs/AllnAs Heterostructure Nanowires for Long-Wavelength Photon Emission. Nano Letters, 2008, 8, 3645-3650.	9.1	23
51	Vertically Aligned GaP/GaAs Core-Multishell Nanowires Epitaxially Grown on Si Substrate. Applied Physics Express, 2008, 1, 064003.	2.4	28
52	Exciton and Biexciton Emissions from Single GaAs Quantum Dots in (Al,Ga)As Nanowires. Japanese Journal of Applied Physics, 2007, 46, 2578-2580.	1.5	11
53	Bending at Thinned GaAs Nodes in GaP-based Free-standing Nanowires. Japanese Journal of Applied Physics, 2007, 46, L780-L782.	1.5	7
54	Enhanced emission of single quantum dot formed by interface fluctuations in photonic-crystal microcavities. Photonics and Nanostructures - Fundamentals and Applications, 2006, 4, 89-93.	2.0	0

#	Article	IF	CITATIONS
55	X-ray Diffraction Measurement of GalnNAs/GaAs Double Quantum Well Structures with Novel Analysis Method for Broadening Factors. Japanese Journal of Applied Physics, 2006, 45, 7167-7174.	1.5	0
56	Highly Selective ZEP/AlGaAs Etching for Photonic Crystal Structures Using Cl2/HI/Xe Mixed Plasma. Japanese Journal of Applied Physics, 2006, 45, L917-L919.	1.5	6
57	Multi-Quantum Structures of GaAs/AlGaAs Free-Standing Nanowires. Japanese Journal of Applied Physics, 2006, 45, 3568-3572.	1.5	11
58	Nanoholes Formed by Au Particles Digging into GaAs and InP Substrates by Reverse Vapor-Liquid-Solid Mechanism. Japanese Journal of Applied Physics, 2005, 44, L1553-L1555.	1.5	1
59	Nanoholes in InP and C60Layers on GaAs Substrates by Using AlGaAs Nanowire Templates. Japanese Journal of Applied Physics, 2005, 44, L428-L431.	1.5	2
60	Structural characterization of GaInNAs/GaAs double quantum well structures. Journal of Applied Physics, 2004, 95, 3443-3452.	2.5	5
61	X-ray diffraction analysis of GalnNAs double-quantum-well structures. Journal of Applied Crystallography, 2004, 37, 14-23.	4.5	5
62	Site-controlled InP nanowires grown on patterned Si substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 24, 133-137.	2.7	33
63	GaAsâ^•AlGaAs nanowires capped with AlGaAs layers on GaAs(311)B substrates. Applied Physics Letters, 2004, 85, 1808-1810.	3.3	32
64	Direct measurement of sub-10 nm-level lateral distribution in tunneling-electron luminescence intensity on a cross-sectional 50-nm-thick AlAs layer by using a conductive transparent tip. Applied Physics Letters, 2001, 78, 3995-3997.	3.3	12
65	Optical interconnection using VCSELs and polymeric waveguide circuits. Journal of Lightwave Technology, 2000, 18, 1487-1492.	4.6	38
66	Carbon doping and etching in GaxIn1â^'xAsyP1â^'y on GaAs substrates using CBr4 by metalorganic chemical vapor deposition. Journal of Electronic Materials, 1999, 28, 63-68.	2.2	19
67	Hybrid-integrated smart pixels for MCM and board-level optical interconnects. , 1999, , .		1
68	Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate. Electronics Letters, 1997, 33, 1148.	1.0	29
69	Growth of vertical-cavity surface-emitting laser structures on GaAs (311)B substrates by metalorganic chemical vapor deposition. Applied Physics Letters, 1997, 70, 3395-3397.	3.3	37
70	Optical beam direction compensating system for board-to-board free space optical interconnection in high-capacity ATM switch. Journal of Lightwave Technology, 1997, 15, 874-882.	4.6	32
71	Carbon doping and etching effects of CBr4 during metalorganic chemical vapor deposition of GaAs and AlAs. Journal of Crystal Growth, 1997, 172, 5-12.	1.5	37
72	Carbon and silicon doping in GaAs and AlAs grown on (3 1 1)-oriented GaAs substrates by metalorganic chemical vapor deposition. Journal of Crystal Growth, 1997, 181, 33-40.	1.5	8

#	Article	IF	CITATIONS
73	Flip-chip bonded 0.85-μm bottom-emitting vertical-cavity laser array on an AlGaAs substrate. IEEE Photonics Technology Letters, 1996, 8, 1115-1117.	2.5	35
74	Novel technology for hybrid integration of photonic and electronic circuits. IEEE Photonics Technology Letters, 1996, 8, 1507-1509.	2.5	30
75	1.55 [micro sign]m vertical-cavity surface-emitting lasers with wafer-fused InGaAsP/InP-GaAs/AlAs DBRs. Electronics Letters, 1996, 32, 1483.	1.0	28
76	MOCVD growth on AlGaAs substrates. Journal of Crystal Growth, 1994, 145, 970-971.	1.5	3